微积分基础——operator_

1.导数

1.引入———变化率

先考虑怎么求一个函数在区间 [ l , r ] [l,r] [l,r] 的平均变化率?显然是 f ( r ) − f ( l ) r − l {{f(r)-f(l)}\over{r-l}} rlf(r)f(l) ,这个式子可以转化为 f ( x + Δ x ) − f ( x ) Δ x {{f(x+\Delta x)-f(x)}\over{\Delta x}} Δxf(x+Δx)f(x) ,这里的 x x x 是一个值,得到的也是一个值。

一般的,当 Δ x \Delta x Δx 无限趋向于 0 0 0 时,得到的即为在这个点的瞬间变化率,即所谓的导数。

2.导函数

在多数情况下,一个函数在每个点的导数也可以用一个对应的函数来表示,这就是导函数,用 f ′ ( x ) f^{'}(x) f(x) 表示,以下简称导数。

f ′ ( x ) = lim ⁡ Δ x → 0 f ( x + Δ x ) − f ( x ) Δ x f^{'}(x)=\lim_{\Delta x\to0}{{f(x+\Delta x)-f(x)}\over{\Delta x}} f(x)=limΔx0Δxf(x+Δx)f(x) ,所以你已经会用定义法求导数了\kk

3.导数的几何意义

一个点的导数,表示的是原函数在该点切线的斜率

4.常见函数的导数

( C ) ′ = 0 (C)^{'}=0 (C)=0

( x n ) ′ = n x n − 1 (x^n)^{'}=nx^{n-1} (xn)=nxn1

( a x ) ′ = a x ln ⁡ a (a^x)^{'}=a^x\ln a (ax)=axlna

( log ⁡ a x ) ′ = 1 x ln ⁡ a (\log_ax)^{'}={{1}\over{x\ln a}} (logax)=xlna1

编程的话三角函数基本不用。

5.导数的基本运算

( C ⋅ f ( x ) ) ′ = C ⋅ f ′ ( x ) (C\cdot f(x))^{'}=C\cdot f^{'}(x) (Cf(x))=Cf(x)

( f ( x ) ± g ( x ) ) ′ = f ′ ( x ) ± g ′ ( x ) (f(x)\pm g(x))^{'}=f^{'}(x)\pm g^{'}(x) (f(x)±g(x))=f(x)±g(x)

编程的话乘除、复合函数基本不用。

2.定积分

1.定义

可以简单理解成函数在 [ a , b ] [a,b] [a,b] 区间中与 x x x 轴围成的面积大小(有正负)。

2.表示

∫ a b f ( x ) ( d ) x \int_a^bf(x)(d)x abf(x)(d)x ,其中 d x dx dx 不能省略,表示的是 x x x 变化无穷小(可以理解成无穷个无穷小变化量相加就是面积), 比如 ∫ a b 2 a x d x = a x 2 + C \int_a^b2axdx=ax^2+C ab2axdx=ax2+C ,但 ∫ a b 2 a x d a = x a 2 + C \int_a^b2axda=xa^2+C ab2axda=xa2+C

3. N L NL NL公式(微积分基本定理)

若已知 F ′ ( x ) = f ( x ) F^{'}(x)=f(x) F(x)=f(x) ,且 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b] 上可积,则有:

∫ a b f ( x ) d x = F ( x ) ∣ a b = F ( b ) − F ( a ) \int_a^bf(x)dx=F(x)\mid_a^b=F(b)-F(a) abf(x)dx=F(x)ab=F(b)F(a)

4.定积分的基本公式(名字自己取的)

1.提取常数

∫ a b C f ( x ) d x = C ∫ a b f ( x ) d x \int_a^bCf(x)dx=C\int_a^bf(x)dx abCf(x)dx=Cabf(x)dx

2.对加法的分配率

∫ a b [ f ( x ) + g ( x ) ] d x = ∫ a b f ( x ) d x + ∫ a b g ( x ) d x \int_a^b[f(x)+g(x)]dx=\int_a^bf(x)dx+\int_a^bg(x)dx ab[f(x)+g(x)]dx=abf(x)dx+abg(x)dx

3.函数平移

∫ a b f ( x ) d x = ∫ a + k b + k f ( x − k ) d x \int_a^bf(x)dx=\int_{a+k}^{b+k}f(x-k)dx abf(x)dx=a+kb+kf(xk)dx

把积分理解成无穷个无穷小变化量相加,就不难证明了。

4.函数周期

∫ a b f ( x ) d x = ∫ a + T b + T f ( x ) d x \int_a^bf(x)dx=\int_{a+T}^{b+T}f(x)dx abf(x)dx=a+Tb+Tf(x)dx

很好证的吧,函数平移一个周期在定义域内等于不动。

5.函数放缩

∫ a b f ( x ) d x = 1 k ∫ k a k b f ( x k ) d x \int_a^bf(x)dx={{1}\over{k}}\int_{ka}^{kb}f({{x}\over{k}})dx abf(x)dx=k1kakbf(kx)dx

不会证了,感性理解

3.不定积分没学,先咕了

4.辛普森积分公式

∫ a b f ( x ) d x ≈ b − a 6 [ f ( a ) + 4 f ( a + b 2 ) + f ( b ) ] \int_a^bf(x)dx\approx{{b-a}\over{6}}[f(a)+4f({{a+b}\over{2}})+f(b)] abf(x)dx6ba[f(a)+4f(2a+b)+f(b)]

目测应该是分的越多越精确。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值