并查集题目

题目1:食物链

活动 - AcWing

解题

食物链是并查集的一道经典题目。

一共有n个动物,其中,A吃B,B吃C,C吃A。我们可以很容易地得出动物的捕食关系和序号的联系:x吃x+n,x+n吃x+2n,x+2n吃x。

于是,当我们要表示“x捕食y”这个关系时,有三种可能性,y可能为A、B、C三类动物,对应的,x可能为C、A、B三类动物。我们先通过一个3*n的数组固定地表示y,再通过我们得到的x和y的关系,将x数组与y数组对应上,数组的[1,n]存储A类动物,[n+1,2n]存储B类动物,[2n+1,3n]存储C类动物。当y为A类动物([1,n])时,x应与y的天敌y+2n合并;当y为B类动物y+n时,x+n应该与y+n的天敌y合并,当y为C类动物x+2n时,x+2n应与y+2n的天敌x+n合并。

#include<iostream>
using namespace std;
const int N=50000;
int n,k;
int cnt=0;
int p[3*N+10];
int find(int x)
{
    if(p[x]!=x) p[x]=find(p[x]);
    return p[x];
}
void merge(int x,int y)
{
    p[find(x)]=find(y);
}
int main()
{
    scanf("%d%d",&n,&k);
    for(int i=1;i<=3*n;i++) p[i]=i;
    while(k--)
    {
        int op,x,y;
        scanf("%d%d%d",&op,&x,&y);
        if(x>n||y>n) 
        {
            cnt++;
            continue;
        }
        if(op==1)
        {
            if(find(x)==find(y+n)||find(x)==find(y+2*n)) 
            {
                cnt++;
                continue;
            }
            merge(x,y);
            merge(x+n,y+n);
            merge(x+2*n,y+2*n);
        }
        else
        {
           if(find(y)==find(x)||find(y+n)==find(x)) 
           {
               cnt++;
               continue;
           }
           merge(x,y+2*n);
           merge(x+n,y);
           merge(x+2*n,y+n);
        }
    }
    printf("%d",cnt);
}

题目2:网络分析

2069. 网络分析 - AcWing题库

解题

首先思考暴力的做法,当操作为1 a b时,我们将两个集合合并,用并查集最基本的merge操作就可以实现;

当操作为2 p t时,我们将节点p所在的并查集所有数都加上t。这只需要遍历一遍所有节点,如果它所在树的根节点和节点p的根节点相同,则加上t。

暴力做法的时间复杂度是O(mn),会超。

#include<iostream>
#include<cstring>
using namespace std;
const int N=10010;
int n,m;
int p[N];
int cnt[N];
bool st[N];
int find(int x)
{
    if(x==p[x]) return x;
    else return p[x]=find(p[x]);
}
void merge(int a,int b)
{
    int pa=find(a),pb=find(b);
    if(pa!=pb) p[pa]=pb;
}

int main()
{
    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;i++) p[i]=i;
    while(m--)
    {
        int op,a,b;
        scanf("%d%d%d",&op,&a,&b);
        if(op==1)
        {
            merge(a,b);
        }
        else 
        {
            int pa=find(a);
            for(int i=1;i<=n;i++)
            {
                if(find(i)==pa) cnt[i]+=b;
            }
        }
    }
    for(int i=1;i<=n;i++) printf("%d ",cnt[i]);
}

在暴力做法的基础上进一步分析,感觉2 p t的操作有点像差分?

我们可以构造一颗差分树,使得每个节点的值是从差分树的根节点到这个节点路径上所有值的总和。

接下来,我们来考虑在进行查找和合并时,要怎么维护我们的差分树。

①合并

如果我们将②节点直接连接到①节点下面,则在计算节点值时,②树的每个节点都会多加一个4。

因此,在合并时,我们要将被合并的子树根节点值减去目标根节点的值。

②查找

在查找过程中,我们会进行按秩合并。

首先考虑不需要按秩合并的情况:

 需要按秩合并时:

#include<iostream>
#include<cstring>
using namespace std;
const int N=10010;
int n,m;
int p[N];
int cnt[N];
int find(int x)
{
    if(x==p[x]||p[p[x]]==p[x]) return p[x];
    else {
        int r=find(p[x]);
        cnt[x]+=cnt[p[x]];
        p[x]=r;
        return r;
    }
}
void merge(int a,int b)
{
    int pa=find(a),pb=find(b);
    if(pa!=pb) 
    {
        p[pa]=pb;
        cnt[pa]-=cnt[pb];
    }
}

int main()
{
    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;i++) p[i]=i;
    while(m--)
    {
        int op,a,b;
        scanf("%d%d%d",&op,&a,&b);
        if(op==1)
        {
            merge(a,b);
        }
        else 
        {
            int pa=find(a);
            cnt[pa]+=b;
        }
    }
    for(int i=1;i<=n;i++) 
    {
        int pi=find(i);
        if(pi==i) printf("%d ",cnt[i]);
        else printf("%d ",cnt[i]+cnt[pi]);
    }
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值