遥感图像小白--3--对象检测&&对象计数&&回归

推荐网站:GitHub - satellite-image-deep-learning/techniques: Techniques for deep learning with satellite & aerial imagery

一、对象检测

遥感中的对象检测为使用边界框定位和包围感兴趣的对象。

对象检测的挑战性:

  • 遥感图像尺寸较大,同时对象可能仅包含几个像素
  • 要检测的对象区域与背景之间的不平衡
  • 对象很容易与背景中的随机特征混淆

随着对象变得更小更密集,图像分辨率的降低,对象检测模型的准确性也会迅速下降。所以,在遥感中使用高分辨率图像(例如 30cm RGB)进行对象检测。航空影像的一个独特特征是物体可以朝任何方向定向。为了有效地提取对象长度和宽度的测量值,使用与对象方向对齐的旋转边界框可能至关重要。

主要任务:

  • 视频中的对象跟踪
  • 使用旋转边界框进行对象检测
  • 通过超分辨率增强对象检测
  • 突出目标检测
  • 物体检测/目标检测

 二、对象计数

当只需要物体的数量而不需要其形状时,U-net可以被用作图像到图像转换问题来处理。

三、回归

遥感中的回归涉及从图像中预测连续变量,例如风速、树高或土壤湿度。

  • 经典机器学习解决:利用特征工程从输入数据中提取数值,然后将其用作线性回归等回归算法的输入。
  • 深度学习解决:采用卷积神经网络 (CNN) 来处理图像数据,然后采用全连接神经网络 (FCNN) 进行回归。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值