一、对象检测
遥感中的对象检测为使用边界框定位和包围感兴趣的对象。
对象检测的挑战性:
- 遥感图像尺寸较大,同时对象可能仅包含几个像素
- 要检测的对象区域与背景之间的不平衡
- 对象很容易与背景中的随机特征混淆
随着对象变得更小和更密集,图像分辨率的降低,对象检测模型的准确性也会迅速下降。所以,在遥感中使用高分辨率图像(例如 30cm RGB)进行对象检测。航空影像的一个独特特征是物体可以朝任何方向定向。为了有效地提取对象长度和宽度的测量值,使用与对象方向对齐的旋转边界框可能至关重要。
主要任务:
- 视频中的对象跟踪
- 使用旋转边界框进行对象检测
- 通过超分辨率增强对象检测
- 突出目标检测
- 物体检测/目标检测
二、对象计数
当只需要物体的数量而不需要其形状时,U-net可以被用作图像到图像转换问题来处理。
三、回归
遥感中的回归涉及从图像中预测连续变量,例如风速、树高或土壤湿度。
- 经典机器学习解决:利用特征工程从输入数据中提取数值,然后将其用作线性回归等回归算法的输入。
- 深度学习解决:采用卷积神经网络 (CNN) 来处理图像数据,然后采用全连接神经网络 (FCNN) 进行回归。