YOLOv8有效改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例

本专栏深入探讨YOLO的改进技术,包括C2f、主干网络、检测头和注意力机制,同时提供入门基础知识及实战项目案例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1️⃣ 什么⁉️你还不知道怎么改进YOLOv8模型?那你一定不能错过这个宝藏专栏‼️

模型改进看似高深,其实也可以很“接地气”~🎯作为一名疯狂踩坑后终于豁然开朗的AI实践者,我必须强推这个专栏!

2️⃣ 150+种模型改进方法,全都能跑!性价比爆炸🔥

模块结构分析、核心原理讲解、作者的深入总结,还有适配多种场景的改法合集,让人一看就懂,一试就通!

✅ 无废话的讲解

✅ 全流程代码,改完能直接上GPU跑

✅ 初学者也能轻松理解,不再怕模型崩溃😩

3️⃣ 全是近三年顶会/顶刊的先进模块,创新度拉满💡

你以为只是简单“套模板”?NONONO~作者专门筛选了来自CVPR、ICCV、NeurIPS等顶会的最新高性能模块,然后手把手教你怎么融入YOLOv8并优化重构

💡 注意力机制 | 卷积变体 | 解码器改进 | 特征增强……
全都是经过二次创新、适配YOLOv8任务的版本,真正做到融合 + 创新 + 实用

YOLOv8模型结构

0.YOLOv8

YOLOv8创新改进目录(持续更新中)

购买专栏后,即可获取所有程序文件,下方仅为部分文件截图。获得文件后,只需将程序放入个人项目中即可直接运行和训练。 你可以根据自己的需求,自由组合不同模块,针对数据集进行有效优化提升。

入门必会知识点

序号标题链接
1写给初学者的YOLO目标检测 概述https://blog.csdn.net/shangyanaf/article/details/130399439
2YOLOv8 来了,快速上手实操https://blog.csdn.net/shangyanaf/article/details/130539468
3目标检测算法以及常用库概述https://blog.csdn.net/shangyanaf/article/details/132988174
4万字详解YOLOv8网络结构Backbone/neck/head以及Conv、Bottleneck、C2f、SPPF、Detect等模块https://blog.csdn.net/shangyanaf/article/details/139223155
5新手小白快速看懂yolov8模型训练结果图表,通过mAP、Precision、Recall等评价性能https://blog.csdn.net/shangyanaf/article/details/139131447
6YOLOv8.yaml文件详解https://blog.csdn.net/shangyanaf/article/details/137656355
7YOLOv9教程:如何在自定义数据上进行YOLOv9的分割训练https://blog.csdn.net/shangyanaf/article/details/138284645
8YOLO-World:缩小开放词汇下的目标检测检测速度和准确性之间的差距https://blog.csdn.net/shangyanaf/article/details/136206642
9手把手教你搭建YOLOV8+CUDA环境,训练自定义数据集,训练推理验证导出。小白也能看得懂的!https://blog.csdn.net/shangyanaf/article/details/139029717
10万字长文精解目标检测中的TP、FP、FN、TN、Precision、Recall 、 F1 Score、AP、mAP与AR 。附代码实现。https://blog.csdn.net/shangyanaf/article/details/138966767
11混淆矩阵与多分类混淆矩阵概念详解及其应用求 Precision F1-Score Recallhttps://blog.csdn.net/shangyanaf/article/details/139104085

实战小项目

序号标题链接
1写给初学者的YOLO目标检测 概述https://blog.csdn.net/shangyanaf/article/details/130399439
1如何使用 YOLOv9 进行对象检测https://blog.csdn.net/shangyanaf/article/details/136757338
2YOLOv9教程:如何在自定义数据上进行YOLOv9的分割训练https://blog.csdn.net/shangyanaf/article/details/138284645
3使用Yolov8和OpenCV计算视频中手扶梯上的人数https://blog.csdn.net/shangyanaf/article/details/134430259
4使用YOLOV5实现视频中的车辆计数https://blog.csdn.net/shangyanaf/article/details/134877969
5YOLO结合PySimpleGUI 构建实时目标检测软件!SoEasy!https://blog.csdn.net/shangyanaf/article/details/135285799

注意力机制

序号标题链接
1【YOLOv8改进-注意力机制】STA(Super Token Attention) 超级令牌注意力机制https://blog.csdn.net/shangyanaf/article/details/139113660
2【YOLOv8改进-注意力机制】Polarized Self-Attention: 极化自注意力 ,更精细的双重注意力建模结构https://blog.csdn.net/shangyanaf/article/details/137295765
3【YOLOv8改进-注意力机制】Non-Local:基于非局部均值去噪滤波的自注意力模型https://blog.csdn.net/shangyanaf/article/details/139105131
4【YOLOv8改进-注意力机制】MLCA(Mixed local channel attention):混合局部通道注意力https://blog.csdn.net/shangyanaf/article/details/139279527
5【YOLOv8改进-注意力机制】LSKNet(Large Selective Kernel Network ):空间选择注意力https://blog.csdn.net/shangyanaf/article/details/137614259
6【YOLOv8改进-注意力机制】LSKA(Large Separable Kernel Attention):大核分离卷积注意力模块https://blog.csdn.net/shangyanaf/article/details/139249202
7【YOLOv8改进-注意力机制】iRMB: 倒置残差移动块,即插即用的轻量注意力https://blog.csdn.net/shangyanaf/article/details/136658166
8【YOLOv8改进-注意力机制】HAT(Hybrid Attention Transformer): 混合注意力机制https://blog.csdn.net/shangyanaf/article/details/139142532
9【YOLOv8改进-注意力机制】EMA(Efficient Multi-Scale Attention):基于跨空间学习的高效多尺度注意力https://blog.csdn.net/shangyanaf/article/details/139160226
10【YOLOv8改进-注意力机制】DAT(Deformable Attention):可变性注意力https://blog.csdn.net/shangyanaf/article/details/139193465
11【YOLOv8改进-注意力机制】D-LKA Attention:可变形大核注意力https://blog.csdn.net/shangyanaf/article/details/146242317
12【YOLOv8改进-注意力机制】CPCA(Channel prior convolutional attention)中的通道注意力,增强特征表征能力https://blog.csdn.net/shangyanaf/article/details/139186904
13【YOLOv8改进-注意力机制】CoTAttention:上下文转换器注意力 ,增强视觉表示并提高计算机视觉任务的性能https://blog.csdn.net/shangyanaf/article/details/139261641
14【YOLOv8改进-注意力机制】CoordAttention: 用于移动端的高效坐标注意力机制https://blog.csdn.net/shangyanaf/article/details/136824282
15【YOLOv8改进-注意力机制】BRA(bi-level routing attention ):双层路由注意力https://blog.csdn.net/shangyanaf/article/details/139307690
16【YOLOv8改进 -注意力机制】SGE(Spatial Group-wise Enhance):轻量级空间分组增强模块https://blog.csdn.net/shangyanaf/article/details/140565720
17【YOLOv8改进 -注意力机制】Mamba之MLLAttention :基于Mamba和线性注意力Transformer的模型https://blog.csdn.net/shangyanaf/article/details/140406244
18【YOLOv8改进 - 注意力机制】Triplet Attention:轻量有效的三元注意力https://blog.csdn.net/shangyanaf/article/details/139999693
19【YOLOv8改进 - 注意力机制】SKAttention:聚合分支信息,实现自适应调整感受野大小https://blog.csdn.net/shangyanaf/article/details/140078451
20【YOLOv8改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力https://blog.csdn.net/shangyanaf/article/details/140083301
21【YOLOv8改进 - 注意力机制】SENetV2: 用于通道和全局表示的聚合稠密层,结合SE模块和密集层来增强特征表示https://blog.csdn.net/shangyanaf/article/details/139610187
22【YOLOv8改进 - 注意力机制】Sea_Attention: Squeeze-enhanced Axial Attention,结合全局语义提取和局部细节增强https://blog.csdn.net/shangyanaf/article/details/139652325
23【YOLOv8改进 - 注意力机制】S2Attention : 整合空间位移和分割注意力https://blog.csdn.net/shangyanaf/article/details/140472196
24【YOLOv8改进 - 注意力机制】RCS-OSA :减少通道的空间对象注意力,高效且涨点https://blog.csdn.net/shangyanaf/article/details/140457853
25【YOLOv8改进 - 注意力机制】NAM:基于归一化的注意力模块,将权重稀疏惩罚应用于注意力机制中,提高效率性能https://blog.csdn.net/shangyanaf/article/details/140083725
26【YOLOv8改进 - 注意力机制】LS-YOLO MSFE:新颖的多尺度特征提取模块 | 小目标/遥感https://blog.csdn.net/shangyanaf/article/details/140092794
27【YOLOv8改进 - 注意力机制】HCF-Net 之 PPA:并行化注意力设计 | 小目标https://blog.csdn.net/shangyanaf/article/details/140111479
28【YOLOv8改进 - 注意力机制】HCF-Net 之 MDCR:多稀释通道细化器模块 ,以不同的稀释率捕捉各种感受野大小的空间特征 | 小目标https://blog.csdn.net/shangyanaf/article/details/140104977
29【YOLOv8改进 - 注意力机制】HCF-Net 之 DASI: 维度感知选择性整合模块 | 小目标https://blog.csdn.net/shangyanaf/article/details/140117642
30【YOLOv8改进 - 注意力机制】GC Block (GlobalContext): 全局上下文块,高效捕获特征图中的全局依赖关系https://blog.csdn.net/shangyanaf/article/details/140528152
31【YOLOv8改进 - 注意力机制】Gather-Excite Attention: 提高了网络捕获长距离特征交互的能力https://blog.csdn.net/shangyanaf/article/details/140637601
32【YOLOv8改进 - 注意力机制】GAM(Global Attention Mechanism):全局注意力机制,减少信息损失并放大全局维度交互特征https://blog.csdn.net/shangyanaf/article/details/140336852
33【YOLOv8改进 - 注意力机制】Focused Linear Attention :全新的聚焦线性注意力模块https://blog.csdn.net/shangyanaf/article/details/140457255
34【YOLOv8改进 - 注意力机制】EffectiveSE : 改进的通道注意力模块,减少计算复杂性和信息丢失https://blog.csdn.net/shangyanaf/article/details/140635865
35【YOLOv8改进 - 注意力机制】ECA(Efficient Channel Attention):高效通道注意 模块,降低参数量https://blog.csdn.net/shangyanaf/article/details/140336733
36【YOLOv8改进 - 注意力机制】DoubleAttention: 双重注意力机制,全局特征聚合和分配https://blog.csdn.net/shangyanaf/article/details/140478959
37【YOLOv8改进 - 注意力机制】ContextAggregation : 上下文聚合模块,捕捉局部和全局上下文,增强特征表示https://blog.csdn.net/shangyanaf/article/details/140664662
38【YOLOv8改进 - 注意力机制】c2f结合CBAM:针对卷积神经网络(CNN)设计的新型注意力机制https://blog.csdn.net/shangyanaf/article/details/139950898
39【YOLOv8改进 - 注意力机制】 MHSA:多头自注意力(Multi-Head Self-Attention)https://blog.csdn.net/shangyanaf/article/details/140110995
40【YOLOv8改进 - 注意力机制】 CascadedGroupAttention:级联组注意力,增强视觉Transformer中多头自注意力机制的效率和有效性https://blog.csdn.net/shangyanaf/article/details/140138885
41【YOLOv8改进 - 注意力机制】 Agent Attention :代理注意力, softmax注意力与线性注意力的优雅融合https://blog.csdn.net/shangyanaf/article/details/140921422
42【YOLOv8改进 - 注意力机制】 CAA: 上下文锚点注意力模块,处理尺度变化大或长形目标https://blog.csdn.net/shangyanaf/article/details/141121752
43【YOLOv8改进 - 注意力机制】MSCA: 多尺度卷积注意力,即插即用,助力小目标检测https://blog.csdn.net/shangyanaf/article/details/136057088
44【YOLOv8改进 - 注意力机制】MCA:用于图像识别的深度卷积神经网络中的多维协作注意力 (论文笔记+引入代码)https://blog.csdn.net/shangyanaf/article/details/136205065
45【YOLOv8改进 - 注意力机制】 MSDA:多尺度空洞注意力 (论文笔记+引入代码)https://blog.csdn.net/shangyanaf/article/details/136215149
46【YOLOv8改进 - 注意力机制】HaloNet通过局部自注意力机制(Local Self-Attention)来捕捉空间交互https://blog.csdn.net/shangyanaf/article/details/145801601
47【YOLOv8改进 - 注意力机制】Axial Attention:轴向注意力,提高计算效率和内存使用https://blog.csdn.net/shangyanaf/article/details/145839350
48【YOLOv8改进 - 注意力机制】 SCSA通过结合空间注意力和通道注意力,提高各种下游视觉任务的性能。https://blog.csdn.net/shangyanaf/article/details/145864131
49【YOLOv8改进 - 注意力机制】SOCA:可训练的二阶通道注意力,自适应地重新缩放通道特征,以获得更具辨别性的表示https://blog.csdn.net/shangyanaf/article/details/145914187
50【YOLOv8改进 - 注意力机制】CGAFusion(Content-Guided Attention): 内容引导注意力特征融合https://blog.csdn.net/shangyanaf/article/details/145999917
51【YOLOv8改进 - 注意力机制】GCT(Gaussian Context Transformer):高斯上下文变换器https://blog.csdn.net/shangyanaf/article/details/146000370
52【YOLOv8改进 - 注意力机制】ELA(Efficient Local Attention):深度卷积神经网络的高效局部注意力机制https://blog.csdn.net/shangyanaf/article/details/146000582
53【YOLOv8改进 - 注意力机制】 ParNet :并行子网络结构实现低深度但高性能的神经网络架构https://blog.csdn.net/shangyanaf/article/details/146027243/
54【YOLOv8改进 - 注意力机制】TripletAttention:轻量有效的三元注意力https://blog.csdn.net/shangyanaf/article/details/146027039

卷积-Conv

序号标题链接
1【YOLOv8改进 - 卷积Conv】RefConv:重新参数化的重聚焦卷积模块https://blog.csdn.net/shangyanaf/article/details/140046006
2【YOLOv8改进 - 卷积Conv】DCNv4: 可变形卷积,动态与稀疏操作高效融合的创新算子https://blog.csdn.net/shangyanaf/article/details/140121827
3【YOLOv8改进 - 卷积Conv】DCNv3: 可变形卷积,结合稀疏注意力机制与卷积的创新算子https://blog.csdn.net/shangyanaf/article/details/140689270
4【YOLOv8改进 - 卷积Conv】DCNv2: 可变形卷积,显式和隐式特征交互学习https://blog.csdn.net/shangyanaf/article/details/140676011
5【YOLOv8改进 - 卷积Conv】SCConv :即插即用的空间和通道重建卷积https://blog.csdn.net/shangyanaf/article/details/135742727
6【YOLOv8改进】RFAConv:感受野注意力卷积,创新空间注意力 (论文笔记+引入代码)https://blog.csdn.net/shangyanaf/article/details/135815075
7【YOLOv8改进】MSBlock : 分层特征融合策略,轻量化网络结构https://blog.csdn.net/shangyanaf/article/details/137029177
8【YOLOv8改进】动态蛇形卷积(Dynamic Snake Convolution)用于管状结构分割任务 (论文笔记+引入代码)https://blog.csdn.net/shangyanaf/article/details/135668961
9【YOLOv8改进】 SPD-Conv空间深度转换卷积,处理低分辨率图像和小目标问题https://blog.csdn.net/shangyanaf/article/details/136051327
10【YOLOv8改进-卷积Conv】DualConv( Dual Convolutional):用于轻量级深度神经网络的双卷积核https://blog.csdn.net/shangyanaf/article/details/139477420
11【YOLOv8改进-卷积Conv】 SAConv(Switchable Atrous Convolution):可切换的空洞卷积https://blog.csdn.net/shangyanaf/article/details/139393928
12【YOLOv8改进-卷积Conv】 RFB (Receptive Field Block):多分支卷积块https://blog.csdn.net/shangyanaf/article/details/139431807
13【YOLOv8改进-卷积Conv】 ParameterNet:DynamicConv(Dynamic Convolution):2024最新动态卷积https://blog.csdn.net/shangyanaf/article/details/139395420
14【YOLOv8改进-卷积Conv】 OREPA(Online Convolutional Re-parameterization):在线卷积重参数化https://blog.csdn.net/shangyanaf/article/details/139465775
15【YOLOv8改进-卷积Conv】 ODConv(Omni-Dimensional Dynamic Convolution):全维度动态卷积https://blog.csdn.net/shangyanaf/article/details/139389091
16【YOLOv8改进-卷积Conv】 AKConv(可改变核卷积):任意数量的参数和任意采样形状的即插即用的卷积https://blog.csdn.net/shangyanaf/article/details/135661842
17【YOLOv8改进 - 卷积Conv】SPConv:去除特征图中的冗余,大幅减少参数数量 | 小目标https://blog.csdn.net/shangyanaf/article/details/140406016
18【YOLOv8改进 - 卷积Conv】Diverse Branch Block(DBB):多样分支模块https://blog.csdn.net/shangyanaf/article/details/146028246
19【YOLOv8改进 - 卷积Conv】 LDConv(Linear deformable convoluton):线性可变形卷积https://blog.csdn.net/shangyanaf/article/details/146124160
20【YOLOv8改进 - 卷积Conv】融合MogaNet中的Multi-Order Gated Aggregation(多阶门控聚合模块)https://blog.csdn.net/shangyanaf/article/details/146243027
21【YOLOv8改进 - 卷积Conv】融合MogaNet中的CA block(多通道聚合模块)https://blog.csdn.net/shangyanaf/article/details/146276534
22【YOLOv8改进 - 卷积Conv】LAE: 轻量级自适应提取卷积,从多尺度特征图中获得更多的上下文信息和高分辨率细节https://blog.csdn.net/shangyanaf/article/details/146286346

主干- Backbone

序号标题链接
1【YOLOv8改进】MobileViT 更换主干网络: 轻量级、通用且适合移动设备的视觉变压器https://blog.csdn.net/shangyanaf/article/details/136962297
2【YOLOv8改进】MobileNetV3替换Backbone (论文笔记+引入代码)https://blog.csdn.net/shangyanaf/article/details/136891204
3【YOLOv8改进】骨干网络: SwinTransformer (基于位移窗口的层次化视觉变换器)(论文笔记+引入代码)https://blog.csdn.net/shangyanaf/article/details/135867187
4【YOLOv8改进】 YOLOv8 更换骨干网络之GhostNetV2 长距离注意力机制增强廉价操作,构建更强端侧轻量型骨干 (论文笔记+引入代码)https://blog.csdn.net/shangyanaf/article/details/136170972
5【YOLOv8改进】 YOLOv8 更换骨干网络之 GhostNet :通过低成本操作获得更多特征 (论文笔记+引入代码).mdhttps://blog.csdn.net/shangyanaf/article/details/136151800
6【YOLOv8改进- Backbone主干】YOLOv8更换主干网络之ConvNexts,纯卷积神经网络,更快更准,,降低参数量!https://blog.csdn.net/shangyanaf/article/details/140451741
7【YOLOv8改进- Backbone主干】YOLOv8 更换主干网络之EfficientNet,高效的卷积神经网络,降低参数量https://blog.csdn.net/shangyanaf/article/details/140451442
8【YOLOv8改进- Backbone主干】YOLOv8 更换主干网络之 PP-LCNet,轻量级CPU卷积神经网络,降低参数量https://blog.csdn.net/shangyanaf/article/details/140450841
9【YOLOv8改进- Backbone主干】2024最新轻量化网络MobileNetV4替换YoloV8的BackBonehttps://blog.csdn.net/shangyanaf/article/details/140364353
10【YOLOv8改进 - Backbone主干】VanillaNet:极简的神经网络,利用VanillaNet替换YOLOV8主干https://blog.csdn.net/shangyanaf/article/details/139665923
11【YOLOv8改进 - Backbone主干】VanillaNet:极简的神经网络,利用VanillaBlock降低YOLOV8参数https://blog.csdn.net/shangyanaf/article/details/139664922
12【YOLOv8改进 - Backbone主干】ShuffleNet V2:卷积神经网络(CNN)架构https://blog.csdn.net/shangyanaf/article/details/139655578
13【YOLOv8改进 - Backbone主干】FasterNet:基于PConv(部分卷积)的神经网络,提升精度与速度,降低参数量。https://blog.csdn.net/shangyanaf/article/details/139639091
14【YOLOv8改进 - Backbone主干】清华大学CloFormer AttnConv :利用共享权重和上下文感知权重增强局部感知,注意力机制与卷积的完美融合https://blog.csdn.net/shangyanaf/article/details/139824105
15【YOLOv8改进 - Backbone主干】EfficientRep:一种旨在提高硬件效率的RepVGG风格卷积神经网络架构https://blog.csdn.net/shangyanaf/article/details/139558834
16【YOLOv10改进- Backbone主干】BiFormer: 通过双向路由注意力构建高效金字塔网络架构 | 小目标
17【YOLOv8改进- Backbone主干】BoTNet:基于Transformer,结合自注意力机制和卷积神经网络的骨干网络https://blog.csdn.net/shangyanaf/article/details/140653663

特征融合

序号标题链接
1【YOLOv8改进 - 特征融合NECK】Slim-neck:目标检测新范式,既轻量又涨点https://blog.csdn.net/shangyanaf/article/details/139878671
2【YOLOv8改进 - 特征融合NECK】SDI:多层次特征融合模块,替换contact操作https://blog.csdn.net/shangyanaf/article/details/140498153
3【YOLOv8改进 - 特征融合NECK】ASF-YOLO:SSFF融合+TPE编码+CPAM注意力,提高检测和分割能力https://blog.csdn.net/shangyanaf/article/details/140042501
4【YOLOv8改进 - 特征融合NECK】 HS-FPN :用于处理多尺度特征融合的网络结构,降低参数https://blog.csdn.net/shangyanaf/article/details/139877859
5【YOLOv8改进 - 特征融合NECK】 GIRAFFEDET之GFPN :广义特征金字塔网络,高效地融合多尺度特征https://blog.csdn.net/shangyanaf/article/details/140459446
6【YOLOv8改进 - 特征融合NECK】 DAMO-YOLO之RepGFPN :实时目标检测的创新型特征金字塔网络https://blog.csdn.net/shangyanaf/article/details/139863259
7【YOLOv8改进】EVC(Explicit Visual Center): 中心化特征金字塔模块(论文笔记+引入代码)https://blog.csdn.net/shangyanaf/article/details/137645622
8【YOLOv8改进 - 特征融合NECK】CARAFE:轻量级新型上采样算子,助力细节提升https://blog.csdn.net/shangyanaf/article/details/139886624
9【YOLOv8改进 - 特征融合】DySample :超轻量级且高效的动态上采样器https://blog.csdn.net/shangyanaf/article/details/139990001
10【YOLOv8改进 - 特征融合NECK】BiFPN:加权双向特征金字塔网络 (论文笔记+引入代码)https://blog.csdn.net/shangyanaf/article/details/136021981
11【YOLOv8改进 - 特征融合NECK】 AFPN :渐进特征金字塔网络 (论文笔记+引入代码).mdhttps://blog.csdn.net/shangyanaf/article/details/136025499
12【YOLOv8改进 - 特征融合】FFCA-YOLO: 提升遥感图像中小目标检测的精度和鲁棒性https://blog.csdn.net/shangyanaf/article/details/140621023
13【YOLOv8改进 - 特征融合】 YOGA iAFF :注意力机制在颈部的多尺度特征融合https://blog.csdn.net/shangyanaf/article/details/139826529
14【YOLOv8改进 - 特征融合】 GELAN:YOLOV9 通用高效层聚合网络,高效且涨点https://blog.csdn.net/shangyanaf/article/details/140460307

损失函数

序号标题链接
1【YOLOv8改进】Shape-IoU:考虑边框形状与尺度的指标(论文笔记+引入代码)https://blog.csdn.net/shangyanaf/article/details/135927712
2【YOLOv8改进】MPDIoU:有效和准确的边界框损失回归函数 (论文笔记+引入代码)https://blog.csdn.net/shangyanaf/article/details/135948703
3【YOLOv8改进】Inner-IoU: 基于辅助边框的IoU损失(论文笔记+引入代码)https://blog.csdn.net/shangyanaf/article/details/135904930
4【YOLOv8改进-损失函数】YOLOv8 更换损失函数之 SIoU EIoU WIoU _ Focal_*IoU CIoU DIoU ShapeIoU MPDIouhttps://blog.csdn.net/shangyanaf/article/details/139512620
5【YOLOv8改进-损失函数】SlideLoss损失函数,解决样本不平衡问题https://blog.csdn.net/shangyanaf/article/details/139483941
6【YOLOv8改进-损失函数】 YOLOv8自带损失函数CIoU / DIoU / GIoU 详解,以及如何切换损失函数https://blog.csdn.net/shangyanaf/article/details/139509783
7【YOLOv8改进- 损失函数】 NWD(Normalized Wasserstein Distance:归一化 Wasserstein 距离),助力微小目标检测。https://blog.csdn.net/shangyanaf/article/details/141729325
8【YOLOv8改进-损失函数】PIoU(Powerful-IoU):使用非单调聚焦机制更直接、更快的边界框回归损失

多模块融合改进

序号标题链接
1【YOLOv8改进- 多模块融合改进】RFAConv+ TripletAttention: 基于感受野注意力卷积与三元注意力的四头小目标检测头,,提高特证提取的效率以及准确率。https://blog.csdn.net/shangyanaf/article/details/141125292
2【YOLOv8改进- 多模块融合改进】ResBlock + GAM: 基于ResBlock的全局注意力机制ResBlock_ GAM,增强特证提取https://blog.csdn.net/shangyanaf/article/details/141136299
3【YOLOv8改进- 多模块融合改进】ResBlock + CBAM: 基于ResBlock的通道+空间注意力,增强特证提取https://blog.csdn.net/shangyanaf/article/details/141135233
4【YOLOv8改进- 多模块融合改进】Non-Local+ LSKNet : 自注意力模型与空间选择注意力的融合改进,助力小目标检测高效涨点https://blog.csdn.net/shangyanaf/article/details/141067397
5【YOLOv8改进- 多模块融合改进】GhostConv + ContextAggregation 幽灵卷积与上下文聚合模块融合改进,助力小目标高效涨点https://blog.csdn.net/shangyanaf/article/details/140665117
6【YOLOv8改进- 多模块融合改进】CPCA + CARAFE : 通道先验卷积注意力与上采样算子的融合改进,助力细节提升!https://blog.csdn.net/shangyanaf/article/details/141065415
7【YOLOv8改进- 多模块融合改进】BoTNet + EMA 骨干网络与多尺度注意力的融合改进,小目标高效涨点https://blog.csdn.net/shangyanaf/article/details/140654746
8【YOLOv8改进- 多模块融合改进】BoTNet + CoordAttention 骨干网络与高效坐标注意力机制融合改进,助力小目标高效涨点https://blog.csdn.net/shangyanaf/article/details/140675321
9【YOLOv8改进- 多模块融合改进】发论文神器SPPF_LSKA,结合各种创新改进,以融合SimAM注意力机制为例!https://blog.csdn.net/shangyanaf/article/details/140691622

C2f融合改进

序号标题链接
1【YOLOv8改进 - C2f融合】C2f融合MLCA(Mixed local channel attention):混合局部通道注意力https://blog.csdn.net/shangyanaf/article/details/146115789
2【YOLOv8改进 - C2f融合】C2f融合iRMB: 倒置残差移动块,即插即用的轻量注意力https://blog.csdn.net/shangyanaf/article/details/146123278
3【YOLOv8改进 - C2f融合】C2f融合deformable_LKA_Attention:可变形大核注意力https://blog.csdn.net/shangyanaf/article/details/139212227
4【YOLOv8改进 - C2f融合】C2f融合CoTAttention_上下文转换器注意力,增强视觉表示并提高计算机视觉任务的性能https://blog.csdn.net/shangyanaf/article/details/146243249
5【YOLOv8改进 - C2f融合】C2f融合DWRSeg二次创新C2f_DWR:扩张式残差分割网络,提高特征提取效率和多尺度信息获取能力,助力小目标检测https://blog.csdn.net/shangyanaf/article/details/146286798
6【YOLOv8改进 - C2f融合】C2f融合DWRSeg二次创新C2f_DWRSeg:扩张式残差分割网络,提高特征提取效率和多尺度信息获取能力,助力小目标检测https://blog.csdn.net/shangyanaf/article/details/140336972
7【YOLOv8改进 - C2f融合】C2f融合SCConv :即插即用的空间和通道重建卷积https://blog.csdn.net/shangyanaf/article/details/146408427

SPPF改进

序号标题链接
1【YOLOv8改进-SPPF】 Focal Modulation :使用焦点调制模块替代SPPFhttps://blog.csdn.net/shangyanaf/article/details/140456375
2【YOLOv8改进-SPPF】 AIFI : 基于注意力的尺度内特征交互,保持高准确度的同时减少计算成本https://blog.csdn.net/shangyanaf/article/details/140500654
3【YOLOv8改进 - SPPF】发论文神器!LSKA注意力改进SPPF,增强多尺度特征提取能力,高效涨点!!!https://blog.csdn.net/shangyanaf/article/details/140685113
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YOLO大师

你的打赏,我的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值