一、作物分类
遥感中的作物分类是指在图像或图像序列中识别和绘制不同作物。它旨在提供对特定区域作物分布和成分的见解,其应用包括监测作物生长和评估作物损害。
机器学习方法:决策树、支持向量机...
深度学习技术:卷积神经网络 (CNN)...
最佳方法取决于数据集的大小和复杂性、所需的精度和可用的计算资源。但是,作物分类的成功在很大程度上取决于输入数据的质量和分辨率,以及标记训练数据的可用性。
二、作物产量和植被预测
农作物产量是农业中的一个重要指标,因为它决定了农场的生产力和盈利能力。它被定义为每单位土地面积的农作物产量,并受一系列因素的影响,包括土壤肥力、天气条件、种植的农作物类型以及病虫害控制。通过利用卫星图像的时间序列,可以执行准确的作物类型分类,并利用某些作物特有的季节性变化。这些信息可用于优化作物管理实践并最终提高作物产量。【需要采用适当的预处理和特征提取技术】
三、生成式网络
生成网络(例如 GAN)旨在生成看起来与真实世界数据相似的新合成数据。这些生成的数据可用于多种用途,包括数据增强、数据不平衡校正以及填充缺失或损坏的数据。包括生成合成数据可以提高遥感算法和模型的性能,从而获得更准确和可靠的结果。