自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(24)
  • 资源 (1)
  • 收藏
  • 关注

原创 【C++学习记录】(二)--一个C++工程文件里有哪些东西?

首先,我有一个完整的C++工程文件,文件分别是包含Debug、include、Service和src。1.了解文件结构: 首先,查看每个文件夹中的内容以了解文件的组织结构。Debug文件夹通常包含与调试相关的文件,include文件夹可能包含头文件 (.h文件),Service文件夹可能包含服务类或模块,而src文件夹可能包含源代码文件 (cpp文件)2.阅读文件: 逐个打开每个文件,阅读其中的代码。尝试阅读和理解每行代码的作用。注意代码中的注释,它们可以提供对代码功能和实现的解释。

2023-07-18 15:05:41 1432 4

原创 【C++ 学习记录】(一)--你好,C++

工作需要,重学C++,实在是太痛苦了,大二的时候应试就没学会!!

2023-07-18 11:00:40 350 4

原创 【论文阅读笔记】 基于无人机多光谱影像的水稻叶面积指数预测

Plant Methods//Remote estimation of rice LAI based on Fourier spectrum texture from UAV image以往的研究表明,遥感图像的光谱特征可以作为估计植被生长参数的有效指标。然而,高分辨率遥感图像的纹理特征很少用于此目的。此外,纹理特征与植被生长参数之间的物理机制尚不清楚。在这项研究中,一种基于无人机图像的傅里叶光谱纹理被开发用于估计水稻叶面积指数。并分析了傅里叶光谱纹理与水稻叶面积指数的关系。结果表明,傅里叶谱纹理可以提高

2023-03-29 16:50:30 545 6

原创 【python】批量实现modis数据的辐射定标,大气校正及地形校正

批量实现modis数据预处理

2023-02-28 16:29:33 2315 4

原创 【论文笔记】RS--基于卫星遥感的中国县级尺度小麦估产研究

RS//A Satellite-Based Method for National Winter Wheat Yield Estimating in China基于卫星遥感的中国县级尺度小麦估产研究1.摘要:本研究采用基于卫星的植被生产模型(即涡流协方差光利用效率,EC-LUE)估算全国冬小麦总初级产量,并将该模型与收获指数(地上生物量与产量之比)相结合,将估算的冬小麦产量转化为产量。具体来说,考虑到收获指数的空间差异,我们采用交叉验证的方法对县、市、省间的冬小麦收获指数进行了反演。利用实地调查和统计

2022-05-21 22:13:43 1816 2

原创 【论文笔记】RSE//结合遥感数据和气象数据改进关中平原小麦产量估算的LSTM神经网络

1.材料与方法计算植被温度条件指数(VTCI)和叶面积指数(LAI)两个遥感指标;主要采用:1km空间分辨率的LST产品、1km空间分辨率的表面反射率数据产品、空间分辨率为500m的4天MODIS LAI数据气象数据与小麦产量数据:主要采用:中国气象局测量的关中平原各县的日降水量和温度数据、陕西省农村年鉴中记录的关中平原各县2007-2017年冬小麦产量数据。研究方法:LSTM、BP和支持向量机。2.LSTM深度神经网络模型作者建立了一个用于小麦产量估算的5层深层神经网络模型,如图3所示,该模

2022-05-19 22:08:31 874 2

原创 【论文笔记】无人机结合纹理,颜色,光谱特征反演冬小麦LAI和LDM

Combining texture, color, and vegetation indices from fixed-wing UAS imagery to estimate wheat growth parameters using multivariate regression methods无人机结合纹理,颜色,光谱特征反演冬小麦LAI和LDM(叶干生物量)1.摘要:近年来,无人机系统(UASs)发展迅速,广泛应用于作物遥感(RS)。植被指数(VI)和颜色指数(CI)是监测作物中常用的RS方

2022-05-03 18:44:22 1360

原创 【实验记录】--大疆智图的辐射定标

50%和75%两块漫反射标准板进行辐射校正时的使用说明1.标准板虽然是漫反射体,在野外测量时,尽可能使用0°观测,也就是观测方向垂直于白线板(法线),入射到白板上的光的入射角(白板法线交角)保持在10-40°之内,在这个条件下使测量数据更可靠。2.拍摄要求:大疆智图在合成二维多光谱时更新了辐射定标的功能,需要辅助定制的校正板子配合使用,根据大疆官方给出的教程,在拍摄无人机图像时,对放置的板子进行悬停拍摄,悬停高度为板子宽度的7倍距离,约1米~1.1米。使用GS PRO进行常规航线任务设置。3.漫反射目

2022-04-12 21:54:45 2190 2

原创 无人机影像的纹理特征提取【ENVI+Python】--纯操作无原理

今天看了张琦琦同学三月新发表的一篇forests文章,顺便学习了一下以前一直早有耳闻但从来不会的遥感影像纹理特征提取的操作(我是小辣鸡),做个学习记录~今天用到的示例数据是今年一月初的精灵4多光谱P4M获取的冬小麦影像,包含五个波段R,G,B,Nir,RedEdge。主要包含辐射定标,layer stacking,PCA,提取第一主成分,基于GLCM提取纹理特征(Co-occurrence Measures)。8种纹理因子:均值(Mean)、方差(Variance)、协同性(Homogeneity)、

2022-04-11 22:52:18 6694 20

原创 【论文笔记】Crop phenotyping in a context of Global Change: what to measure and how to do it

【论文笔记】Crop phenotyping in a context of Global Change: what to measure and how to do it全球变化背景下的作物表型:测什么&如何去做1.摘要:High-throughput crop phenotyping, particularly under field conditions, is nowadays perceived as a key factor limiting crop genetic advan

2021-12-10 11:21:03 932 1

原创 【学习记录】WBF--加权框融合,优化目标检测的SOTA

WBF–加权框融合,已经成为优化目标检测的SOTA了。如果你熟悉目标检测的工作原理,你可能知道总有一个主干CNN来提取特征。还有一个阶段是,生成区域建议(region proposal)–可能的建议框,或者是过滤已经提出的建议区域。这里的主要问题是,要么物体检测任务出现一物多框,要么生成的边框不够,最终导致平均精度较低的原因。目前其实已经提出了一些算法来解决这个问题。1.比如我们常见的NMS–非极大抑制。但是其实,对于遮挡问题较为严重的检测任务,在一些目标密集的区域,可能包含多个标签,这意味着将出现一框

2021-12-07 11:52:08 1770 10

原创 【论文笔记】Fully automated region of interest segmentation pipeline for UAV based RGB images

Fully automated region of interest segmentation pipeline for UAV based RGB images1.摘要Unmanned Aerial Vehicles (UAVs) have exhibited its potential for efficient and noninvasive crop data acquisition in high throughput crop phenotyping. In general, for an

2021-11-25 16:16:37 504 1

原创 【神经网络学习】--注意力机制

【神经网络学习】–注意力机制1.从核心思想角度理解:注意力机制,其主要的思想是,一系列的注意力分配系数,即权重参数。通过这些权重参数来强调或选择目标处理对象中所包含的重要信息,并且抑制住一些无关的细节信息。通俗来讲就是,将注意力集中到有用的信息上,而减少或不用再噪声中花费时间,节省算力。把Attention仍然理解为从大量信息中,有选择的筛选出少量重要信息,并聚焦到这些重要信息上,忽略掉大多数不重要的信息。聚焦的这个过程就体现在这些权重系数的计算上,权重越大越聚焦于其对应的Value值上,即权重代

2021-11-14 16:01:09 3087

原创 【实验记录】yolov5的一些改进tricks总结--持续更ing

【实验记录】yolov5的一些改进tricks总结1.在yolov5上增加小目标检测层link2.在yolov5上增加注意力机制link

2021-11-04 14:57:38 43472 62

原创 【论文笔记】高光谱分类--融合栈式自编码与 CNN 的高光谱影像作物分类方法

【论文笔记】作物分类–融合栈式自编码与 CNN 的高光谱影像作物分类方法一、摘要:在高光谱影像作物分类中,为了充分利用高光谱遥感影像完整的光谱信息,同时避免高维数据带来的Hughes现象。从栈式自编码网络的数据降维与CNN网络的分类优势出发,首先分析了此种网络在训练过程中的共性,以自编码网络优化过程中分类器的选取作为切入点,构建了可用于高光谱影像分类的融合网络架构。Hughes现象:Hughes现象是指在高光谱分析中过程中,随着参与运算波段数目的增加,分类精度“先增后降”的现象。与多光谱相比,高光谱图

2021-11-04 14:49:45 890

原创 【论文笔记】:作物分类--多时相极化SAR数据的旱地作物分类研究

【论文笔记】:作物分类–多时相极化SAR数据的旱地作物分类研究单位:中国农业科学院农业资源与农业区划研究所一、摘要:1.目的:对河北省冀州市棉花、玉米、水体和建筑进行分类,比较不同时相及分类方法RADARSAT-2数据对4种地物的分类精度。2.方法:(1) 计算得到每个时相 (2018年7月14日、 8月7日、9月24日) 全极化RADARSAT-2数据的39个特征;(2) 结合随机森林分类器比较不同分解方法(Freeman 分解、Yamaguchi 分解、MCSM 模型和 Cloud 分解)

2021-11-01 16:47:42 2521 2

原创 【论文笔记】:综述--作物遥感分类研究进展

论文笔记:综述–作物遥感分类研究进展摘要:农作物精细分类是农业资源与环境监测的重要环节,提取不同作物种植信息能够为我国农业生产提供基础数据支撑。本文旨在梳理作物遥感分类关键技术的发展脉络,重点评述了分类特征、尺度问题以及分类方法3个方面的情况,最后讨论和展望了今后作物遥感分类研究的发展方向,希望提供现阶段作物遥感分类研究进展,为作物遥感研究方法的创新和改善提供理论支撑,为后续农业遥感应用提供参考。关键词: 作物分类; 特征提取; 尺度效应; 分类方法1.分类特征从单一特征趋向多特征并用,–这是有

2021-11-01 14:33:06 3148 2

原创 「数据可视化记录」Origin:多组数据散点图的绘制(带对角线)及多组graph的组合排版

「数据可视化记录」Origin:多组数据散点图的绘制(带对角线)及多组graph的组合排版在回归预测分析的论文里,经常看见这种训练集和测试集同时分布的散点图,对角线的存在是看模型预测结果与真实值的偏差情况。之前尝试过用python绘制,今天试一下用origin画画,虽然很简单,但我还是要记一下滴~**目标:****一、基础散点图**在excel整理好两组数据,即训练集和测试集的y_true和y_pre,复制到origin的table里,大概这个格式。绘图-散点图-散点图得到基础散点图,双击

2021-10-27 16:58:05 34735 9

原创 【论文笔记】TPH-yolov5 基于transformer的改进yolov5的无人机目标检测

TPH-yolov5–基于transformer的改进yolov5的无人机目标检测我是目录这里是原文~~添加链接描述本文在YOLOv5的基础上加入了一些新的技术,比如ViT、CBAM和一些Tricks(数据增广、多尺度测试等),最终命名为TPH-YOLOv5的目标检测器,特别擅长在无人机的目标捕捉。工作单位: 北京航空航天大学TPH-yolov5整体架构:本文的主要贡献:1.在yolov5的基础上,又增加了一个预测头来检测不同尺度的物体。2.用transformer predictio

2021-10-23 15:19:01 7315 3

原创 「目标检测」中,如何提高mAP,优化数据集?

「目标检测」中,如何提高mAP,优化数据集?以yolov5举例,源码一、在detect.py中的两个概念:1.conf_thres:confidence threshold 置信度阈值,表示只显示预测概率超过conf_thres的预测结果,如果想让yolo只标记可能性高的地方,就把这个参数提高。2.iou_thres:交并比阈值,表示预测框与真实框的交集与并集的取值。越大,则容易将对于同一个物品的不同预测结果 当成 对多个物品的多个预测结果,导致一个物品出现了多个预测结果。越小,则容易将对于多个

2021-10-22 15:33:38 4922 7

原创 【学习记录】win10搭建YOLOX训练自己的VOC数据集

我是目录:前言:1.yolox的训练配置2.yolox源码3.必要的环境配置yolox所需环境1.安装依赖库2.安装yolox3.安装apex4.下载预训练模型4.准备自己的数据集构建VOC数据集5.训练6.测试总结:前言:基于VOC数据集的yolox踩坑记录,包括环境配置,数据集的制作,模型训练和检测。1.yolox的训练配置1.1300epoch的训练长度,其中,前5个epoch使用warmup学习率策略;优化器使用标配的SGD;1.2多尺度训练:448-832,不再是以往的320-608了

2021-08-23 17:40:23 4594 9

原创 联邦学习笔记

Get了新知识之联邦学习传统机器学习算法被大家关注很久了,本菜鸟也在各种海量教程中跑通了深度学习的一众算法。昨天傍晚闲来,有幸和某985计算机博士探讨对象分享的一篇10分农学方面的sci,它到底亮眼在哪里。大佬惊叹,10分在计算机领域,都是ccf a或者中科院一区的水平。惊呼!作者那一栏都可以组队去打狼了,全是一众合作(提供数据)的科研机构。也许就是因为他的工作量巨大,研究站点遍布全国,因此得到的结论更加具有普适意义和真正意义上的应用价值。相比于搜集全国站点数据这种庞大的工作量,大佬说,这就涉及到他的研

2021-07-31 17:05:50 530 4

原创 无人机图像的辐射定标方法

遥感所利用的各种辐射能均要与地球大气层发生相互作用、 散射、吸收,而使能量衰减,并使光谱分布发生变化。大气的衰减作用对不同波长的光是有选择性的,因而大气对不同波段的图像的影像是不同的。另外,太阳-目标-遥感器之间的几何关系不同,则所穿越的大气路径长度不同,使图像中不同地区地物的像元灰度值所受大气影响程度不同,且同一地物的像元灰度值在不同获取时间所受大气影响程度也不同。辐射定标的过程是将DN值转化为实际物理意义的大气顶层辐射亮度或反射率。辐射定标的原理是建立数字量化值与对应视场中辐射亮度值之间的定量关系,以

2021-05-07 20:42:59 4641 3

原创 【笔记】目标检测以及分割的现状和挑战

【笔记】目标检测以及分割的现状和挑战计算机视觉中的基础任务*classification(分类)*object detection(目标检测)*semantic segmentation(语义分割)*instance segmentation (实例分割)*keypoint detection (关键点检测)*VQA定义:在分割中不同类用Pixel,一个mask来表示;检测:框检测。人骨架识别,动作检测;如果有一些遮挡,很难处理的比较好。检测评价指标AP(average pre

2021-01-02 23:47:07 1138 4

代码.ipynb

代码.ipynb

2023-02-03

2019年1月中国各级行政区边界.zip

2019年1月中国各级行政区边界.zip

2021-09-17

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除