- 博客(8)
- 收藏
- 关注
原创 读懂 -量化近况与网格交易
此外,交易的同质化同样容易引发市场的异常波动。量化模型的广泛采用有一些弊端,例如模型本身存在不稳定因,比如时而可以看到的造成巨大波动的“乌龙指现象”第二,量化的竞争非常剧烈,成功的模型的超额收益往往因为模型的复制而被拉平,量化模型越来越同质化,算法和策略越来越趋向一致,导致波动。如果开盘价为 600元,算法将在 500元、400 元下买单,在 700元和 800 元下卖单,可以看到,网格间距是这个简单算法中的重要参数,正常情况下,波动较大的标的应设置较大的格距,波动较小的标的应设置较小的格距。
2023-07-04 18:19:55 261
原创 前 Citadel 主管谈对冲基金交易员的职场法则
这不是玩游戏,没有重来的机会。想法,虽然我远不是最成功的对冲基金 PM(曾在DE Shaw 的组合中担任了4年的PM.以Schonfeld 和 Citadel旗下的 Aptigon),而且现在己经退休,所以我肯定不是这方面的绝对杈威.创建一个列表,每周向PM要10分钟时间,问任何你不明白的事情,别不懂装懂充分利用团队中高级分析师的资源,你只有3个月的时问,到第6个月,人们不会再把你当做新。西,PM的年龄相对大,技术知识也少,与数据科学团队成为朋友,成为你团队的内部数据专家,这样会增加你的价值。
2023-05-31 20:07:33 450 1
原创 Web3 中的创造者经济范式转变:NFT、责任、DAO、MeMe
基于网民的快速复制和传播能力,很多表情包都是在前人创作的内容基础上完成的,或多或少指的是有趣的、传播广泛的、有感染力的网络内容,比如一张带文字的图片,或者一段视频等等。创作者带来的用户偏好和行为数据是平台最宝贵的资产,他们希望将用户锁定在自己的生态网络中,积累最大的专有数据库。互联网不需要残酷的审查,也不需要中心化的监管者,只需要一个去中心化的问责币层来压制不良行为,奖励积极贡献,回归品质和责任本身,延续真实的创意内容体验,从而避免点击竞争,网络钓鱼等挑衅行为很方便,从而积极引导互联网文明。
2023-05-26 15:08:27 304 1
原创 一文读懂 - 量化近况与网格交易
此外,交易的同质化同样容易引发市场的异常波动。量化模型的广泛采用有一些弊端,例如模型本身存在不稳定因,比如时而可以看到的造成巨大波动的“乌龙指现象”第二,量化的竞争非常剧烈,成功的模型的超额收益往往因为模型的复制而被拉平,量化模型越来越同质化,算法和策略越来越趋向一致,导致波动。如果开盘价为 600元,算法将在 500元、400 元下买单,在 700元和 800 元下卖单,可以看到,网格间距是这个简单算法中的重要参数,正常情况下,波动较大的标的应设置较大的格距,波动较小的标的应设置较小的格距。
2023-05-22 19:19:50 531 1
原创 深度学习如何运用到区块链中?
虽然这看起来很吸引人,但由于LINK在Coinba一年多的历史交易数据,是相对很小的数据集,对预测模型的挑战是极大的,因为对于大多数深度的神经网络来说,小数据集不足以概括出任何相关的知识。由于机器学习是建立在知识的基础上的,而且知识不是一个离散的单元,对于一个给定的问题,几乎不可能讨论一种方法与另一种方法的优点。创建量化机器学习模型的过程在许多方面仍然是高度主观的。在我们的示例场景中,NAS方法可以处理一个数据集,该数据集包含分散式交易所中的交易,并生成一些模型,这些模型可以根据这些记录预测以太坊的价格。
2023-05-12 21:05:31 1074 1
原创 交易中的强化学习
强化学习算法通过从2017年和2018年Amazon股价变动学习到的模型,并且更宏观的考虑“思考”,模型会因此持有Amazon的股票,从而在未来获得巨额利润。持有的Q值为0.966,则采取“持有”行动,卖出的Q值0.954,持有的Q值大,因此采取持有。我们可以选择最大Q值采取的行动,从而得到最大的回报。但现实中,我们面对的将是巨大的状态空间,因此,建立一个Q表既耗时又耗计算资源。在金融市场上,我们使用强化学习算法的目的,是通过观察交易行为的回报情况,从而学会如何获得最大的回报交易策略。
2023-05-12 19:51:42 349
原创 Web2 和 Web3 之间缺失的环节:托管
粉丝应该能够注册、取出他们的信用卡、购买他们最喜欢的创作者的通证,并在他们的帐户中看到它——它必须是直观的,并且必须反映熟悉的 web2 体验,以便通过他们的整体看到用户旅行。然而,进一步冒险进入更广泛的完全去中心化的可互操作应用程序和网络的 web3 生态系统——不仅仅是交易所,还包括游戏、通证化社交网络、粉丝参与社区和其他丰富的用户体验——在很大程度上无法通过托管人访问. 这种 web3 体验需要将他们的加密通证发送到非托管钱包,其中除了用户之外没有人持有私钥,并且可以完成的交易类型没有限制。
2023-05-09 18:56:37 98
原创 从事算法交易必读的5本书!
一提到算法交易,非专业人士首先想到的往往是机构投资者用来高效执行交易的算法,但其实算法交易不仅仅涉及交易层面,还有如何量化及实现系统。Dr Chan系列的第二本,这本书对第一本书中没有提及惯性、均值回归与高频策略进行了详细的讨论,并提供了部分实现细节,本书对于数学有一定要求(因为很多内容涉及卡尔曼过滤器、平稳/协整,扩展迪基-福勒检验等)。既涵盖一些基础,同时又不涉及过于繁杂的数学讨论,因为在一本书里兼顾这两点是很难做到的,基于这个原则,为大家推荐下面5本书,希望帮助你快速掌握量化交易的整体框架。
2023-05-06 15:55:47 536
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人