
Redis 的主从复制模式下,⼀旦主节点由于故障不能提供服务,需要人工进行主从切换,同时⼤量的客⼾端需要被通知切换到新的主节点上,对于上了⼀定规模的应用来说,这种⽅案是无法接受的,于是Redis从2.8开始提供了RedisSentinel(哨兵)来解决这个问题
1. Redis Sentinel的概念
1.1 基本概念
在介绍RedisSentinel之前,先对⼏个名词概念进⾏必要的说明
Redis Sentinel 是Redis 的⾼可⽤实现⽅案,在实际的⽣产环境中,对提⾼整个系统的⾼可⽤是⾮常有帮助的
1.2 引出高可用
主从复制模式很好,但是并不是万能的,它同样遗留下以下⼏个问题:
- 主节点发⽣故障时,进⾏主从切换的过程是复杂的,需要完全的⼈⼯参与,导致故障恢复时间⽆法保障。
- 主节点可以将读压⼒分散出去,但写压⼒/存储压⼒是⽆法被分担的,还是受到单机的限制。
其中第⼀个问题是高可用问题,即Redis哨兵主要解决的问题;第⼆个问题是属于存储分布式的问题,留给Redis集群去解决。
人工恢复主节点故障
Redis 主从复制模式下,主节点故障后需要进⾏的人工工作是⽐较繁琐的,我们在图中⼤致展⽰了整体过程
哨兵⾃动恢复主节点故障
当主节点出现故障时,RedisSentinel能⾃动完成故障发现和故障转移,并通知应用方,从⽽实现真正的⾼可⽤。
Redis Sentinel 是⼀个分布式架构,其中包含若⼲个Sentinel节点和Redis数据节点,每个Sentinel 节点会对数据节点和其余Sentinel节点进⾏监控(这些进程之间,建立tcp长连接,定期发送心跳包)。
- 当它发现节点不可达时,会对节点做下线表示。
- 如果下线的是主节点,它还会和其他的Sentinel节点进⾏“协商”(防止误判),当⼤多数Sentinel节点对主节点不可达这个结论达成共识之后,它们会在内部“选举”出⼀个领导节点来完成⾃动故障转移的⼯作,同时将这个变化实时通知给Redis应用方。
整个过程是完全⾃动的,不需要人工介入
针对主节点故障的情况,故障转移流程⼤致如下:
- 主节点故障,从节点同步连接中断,主从复制停⽌。
- 哨兵节点通过定期监控发现主节点出现故障。哨兵节点与其他哨兵节点进⾏协商,达成多数认同主节点故障的共识。这步主要是防⽌该情况:出故障的不是主节点,⽽是发现故障的哨兵节点,该情况经常发⽣于哨兵节点的⽹络被孤⽴的场景下。
- 哨兵节点之间使⽤Raft算法选举出⼀个领导⻆⾊,由该节点负责后续的故障转移⼯作。
- 哨兵领导者开始执⾏故障转移:从节点中选择⼀个作为新主节点(
slaveof no one
);让其他从节点同步新主节点(slaveof host port
)- 通知应⽤层转移到新主节点。
通过上面的介绍,可以看出Redis Sentinel具有以下几个功能:
- 监控:Sentinel节点会定期检测Redis数据节点、其余哨兵节点是否可达。
- 故障转移:实现从节点晋升(promotion)为主节点并维护后续正确的主从关系。
- 通知:Sentinel节点会将故障转移的结果通知给应⽤⽅
2. Redis Sentinel的部署(基于docker)
2.1 部署
- 安装docker和docker-compose
apt install docker-compose
- 停⽌之前的redis-server
# 停⽌redis-server
service redis-server stop
# 停⽌redis-sentinel 如果已经有的话.
service redis-sentinel stop
- 使⽤docker获取redis镜像
docker pull redis:5.0.9
解决 Docker 错误:docker: Get https://registry-1.docker.io/v2/: net/http: request canceled 的问题
# 1. 修改 Docker 配置文件
sudo nano /etc/docker/daemon.json
# 2.将以下内容添加到配置文件中:
{
"registry-mirrors" : [
"https://docker.m.daocloud.io",
"https://docker-cf.registry.cyou"
],
"insecure-registries" : [
"docker.mirrors.ustc.edu.cn"
],
"debug": true,
"experimental": false
}
# 3.重启 Docker 服务
sudo systemctl restart docker
编排redis主从节点:创建三个容器,作为redis数据节点
- 编写docker-compose.yml
创建/root/redis/docker-compose.yml,同时cd到yml所在⽬录中,编写yml文件
version: '3.7'
services:
master:
image: 'redis:5.0.9'
container_name: redis-master
restart: always
command: redis-server --appendonly yes
ports:
- 6379:6379
slave1:
image: 'redis:5.0.9'
container_name: redis-slave1
restart: always
command: redis-server --appendonly yes --slaveof redis-master 6379
ports:
- 6380:6379
slave2:
image: 'redis:5.0.9'
container_name: redis-slave2
restart: always
command: redis-server --appendonly yes --slaveof redis-master 6379
ports:
- 6381:6379
- 启动所有容器
docker-compose up -d
- 查看运⾏⽇志
docker-compose logs
编排 redis-sentinel节点
- 编写docker-compose.yml
创建/root/redis-sentinel/docker-compose.yml,同时cd到yml所在⽬录中
version: '3.7'
services:
sentinel1:
image: 'redis:5.0.9'
container_name: redis-sentinel-1
restart: always
command: redis-sentinel /etc/redis/sentinel.conf
volumes:
- ./sentinel1.conf:/etc/redis/sentinel.conf
ports:
- "26379:26379"
sentinel2:
image: 'redis:5.0.9'
container_name: redis-sentinel-2
restart: always
command: redis-sentinel /etc/redis/sentinel.conf
volumes:
- ./sentinel2.conf:/etc/redis/sentinel.conf
ports:
- "26380:26379"
sentinel3:
image: 'redis:5.0.9'
container_name: redis-sentinel-3
restart: always
command: redis-sentinel /etc/redis/sentinel.conf
volumes:
- ./sentinel3.conf:/etc/redis/sentinel.conf
ports:
- "26381:26379"
networks:
default:
external:
name: redis-data_default
- 创建配置⽂件
创建sentinel1.conf、sentinel2.conf、sentinel3.conf,三份⽂件的内容是完全相同的
bind 0.0.0.0
port 26379
sentinel monitor redis-master redis-master 6379 2
sentinel down-after-milliseconds redis-master 1000
sentinel monitor
主节点名 主节点ip 主节点端⼝ 法定票数
sentinel down-after-milliseconds
:主节点和哨兵之间通过⼼跳包来进⾏沟通,如果⼼跳包在指定的时间内还没回来,就视为是节点出现故障.
- 启动所有容器
docker-compose up -d
- 查看运⾏⽇志
docker-compose logs
2.2 验证
至此,我们的节点就编排好了
下面我们来验证一下哨兵效果
结论
- Redis主节点如果宕机,哨兵会把其中的⼀个从节点,提拔成主节点.
- 当之前的Redis主节点重启之后,这个主节点被加⼊到哨兵的监控中,但是只会被作为从节点使⽤
2.3 选举流程
假定当前环境如上⽅介绍,三个哨兵(sentenal1、sentenal2、sentenal3),⼀个主节点(redis-master),两个从节点(redis-slave1,redis-slave2),当主节点出现故障,就会触发重新⼀系列过程
- 主观下线
当redis-master 宕机,此时redis-master和三个哨兵之间的⼼跳包就没有了,此时站在三个哨兵的⻆度来看,redis-master出现严重故障,因此三个哨兵均会把redis-master判定为主观下线(SDown)
- 客观下线
此时,哨兵sentenal1、sentenal2、sentenal3均会对主节点故障这件事情进⾏投票,当故障得票数>=配置的法定票数之后,此时意味着redis-master故障这个事情被做实了,此时触发客观下线(ODown)
- 选举出哨兵的leader
接下来需要哨兵把剩余的slave中挑选出⼀个新的master,这个⼯作不需要所有的哨兵都参与,只需要选出个代表(称为leader),由leader负责进⾏slave升级到master的提拔过程,这个选举的过程涉及到Raft 算法。
下面的过程是面试重点
选举leader的过程:
- 每个哨兵都只有一票
- 当哨兵A第一个发现主节点是客观下线时,就立即给自己投一票,并告知哨兵B、C(相当于拉票)
- 哨兵B、C反应慢半拍,当收到哨兵A的告知,并且自己手中的票还在,就投给哨兵A
- 若有多个拉票请求,则投给先到达的
- 如果总票数超过哨兵数量的一半,则leader选举完成(哨兵个数为奇数个,就是为了方便投票)
- 其实,投票的过程,就是看哪个哨兵的反应快(网络延迟小)
leader选好后,就需要推举从节点,从节点变为主节点的过程:
- 查看节点优先级:每个redis节点,都配置了一个优先级
slave-priority
,优先级高的胜出- 优先级相同,查看offset:
offset
越大,表示从节点同步主节点的数据越多,二者越接近,offset大的胜出- 优先级、offset都相同,查看runid:节点的
runid
是随机的,此时就看缘分了
新的主节点选好后,leader就会控制这个节点,执行slave no one
,成为master节点;在控制其它节点,执行slaveof
,让这些节点,以新的master作为主节点。
上述过程,都是"⽆⼈值守",Redis⾃动完成的,这样做就解决了主节点宕机之后需要⼈⼯⼲预的问题,提⾼了系统的稳定性和可⽤性
⼀些注意事项:
- 哨兵节点不能只有⼀个,否则哨兵节点挂了也会影响系统可⽤性.
- 哨兵节点最好是奇数个,⽅便选举leader,得票更容易超过半数.
- 哨兵节点不负责存储数据,仍然是redis主从节点负责存储
- 哨兵节点可以使用配置不是很高的节点
- 哨兵+主从复制解决的问题是"提⾼可⽤性",不能解决"数据极端情况下写丢失"的问题
- 即主节点写的数据,从节点还未同步,主节点就挂了。所以需要写多份数据
- 哨兵+主从复制不能提⾼数据的存储容量,当我们需要存的数据接近或者超过机器的物理内存,这样的结构就难以胜任了
- 为了能存储更多的数据,需要引⼊了集群