目录
今天要跟大家介绍的另外两种非常重要的数据结构--栈和队列,栈和队列是特点针锋相对的两个数据结构,但是有意思的是它们同时还能够相互联系,比如我们可以用两个栈实现队列操作,用两个队列实现栈操作等,当然首先我们得了解它们的基础性质特点。
一、栈
1.栈的概念和结构
- 栈:一种特殊的线性表,其只允许在固定的一端进行插入和删除元素操作。进行数据插入和删除操作的一端称为栈顶,另一端称为栈底。
- 栈中的数据元素遵守后进先出LIFO(Last In First Out)的原则(也可以称作先进后出)。
栈是限定仅在表尾进行插入或删除操作的线性表。因此对栈来说,表尾端有其特殊含义,称为栈顶。相应的表头端称为栈底。栈的特点是后进先出,即最后被压入栈的元素会第一个被弹出。因此,栈有重要的两个操作:压栈和出栈。
- 压栈:栈的插入操作,入数据在栈顶。
- 出栈:栈的删除操作,出数据也在栈顶。
2.栈的实现
对于栈的实现来说既可以使用数组,也可以使用链表。因为对于栈的两个重要操作——压栈和出栈来说,只需要对数组或链表进行尾插或者尾删。相对而言数组的结构实现更优一些。因为数组在尾上插入数据的代价比较小。
写出一个能够正常使用栈,首先需要定义好栈的结构体,然后满足数据结构最基本的增删查改的操作。对于栈来说,需要有压栈、出栈、返回栈顶元素、返回栈中有效元素个数、检测栈是否为空、栈的销毁这些功能。即下图:
typedef int STDataType;
typedef struct Stack
{
STDataType* _a;
int _top; // 栈顶
int _capacity; // 容量
}Stack;
// 初始化栈
void StackInit(Stack* ps);
// 入栈
void StackPush(Stack* ps, STDataType data);
// 出栈
void StackPop(Stack* ps);
// 获取栈顶元素
STDataType StackTop(Stack* ps);
// 获取栈中有效元素个数
int StackSize(Stack* ps);
// 检测栈是否为空,如果为空返回非零结果,如果不为空返回0
int StackEmpty(Stack* ps);
// 销毁栈
void StackDestroy(Stack* ps);
接下来让我们用具体的代码实现下列功能。
(1)定义栈的结构体
下面是定长的静态栈的结构,实际中不实用,所以我们主要实现下面支持动态增长的栈。
typedef int STDataType;
#define N 10
typedef struct Stack
{
STDataType a[N];
int _top; // 栈顶
}Stack;
常用的是支持动态增长的栈。
typedef int STDataType;
typedef struct Stack
{
STDataType* a;
int top; // 栈顶
int capacity; // 容量
}Stack;
(2)初始化
void StackInit(ST* ps)
{
assert(ps);
//初始化
ps->a = NULL;
ps->top = 0;
ps->capacicy = 0;
}
(3)压栈
void StackPush(ST* ps, STDataType x)
{
assert(ps);
//检查空间,空间满了需要增容。
if (ps->top == ps->capacity)
{
//栈为空,则第一次开辟4个所需类型的空间
//栈满且不为空,则扩容2倍
int newCapacity = ps->capacity == 0 ? 4 : ps->capacity * 2;
STDataType* tmp = (STDataType*)realloc(ps->a, newCapacity*sizeof(STDataType));
if (tmp == NULL)
{
perror("realloc fail");
exit(-1);
}
ps->a = tmp;
ps->capacity = newCapacity;
}
ps->a[ps->top] = x;
ps->top++;
}
(4)判空
因为接下来的出栈和返回栈顶元素操作需要检测栈是否为空,所以我们先实现判空功能。
bool StackEmpty(ST* ps)
{
assert(ps);
return ps->top == 0;
}
(5)出栈
出栈前需要先判断栈是否为空,如果栈为空则不能删除,使用assert报错。
void StackPop(ST* ps)
{
assert(ps);
assert(!StackEmpty(ps));
--ps->top;
}
(6)返回栈顶元素
同理,栈为空无法返回,如果为空直接断言。
STDataType StackTop(ST* ps)
{
assert(ps);
assert(!StackEmpty(ps));
return ps->a[ps->top - 1];
}
(7)返回栈有效元素个数
int StackSize(ST* ps)
{
assert(ps);
return ps->top;
}
(8)销毁
void StackDestroy(ST* ps)
{
assert(ps);
free(ps->a);
ps->a = NULL;
ps->capacity = ps->top = 0;
}
3.有关栈值得注意的问题
- 使用数组定义支持动态增长的栈时,或者使用链表定义栈时,在进行销毁操作,不要忘记数组和链表中的每个节点是由malloc函数动态开辟的,销毁栈时不要忘记同时需要销毁动态开辟的数组和节点,防止出现内存泄漏。
- 数据结构建议不要直接访问结构体数据,一定要通过函数接口访问! 例如:如果想要判断栈是否为空,应该使用定义的StackEmpty函数,不可以直接访问st->top然后自行判断,因为每个人实现栈的细节可能稍微有些差异,直接访问结构体数据会导致出现错误
- 数据结构讲究低耦合高内聚,无论使用什么方式实现的栈,只要功能符合要求即可。栈的实现方式最好足够独立,与后面的使用过程相互独立互不影响。
- 其他问题欢迎补充交流。
二、队列
1.队列的概念和结构
- 队列:只允许在一端进行插入数据操作,在另一端进行删除数据操作的特殊线性表,队列具 有先进先出FIFO(First In First Out)
- 入队列:进行插入操作的一端称为队尾。
- 出队列:进行删除操作的一端称为队头。
2.队列的实现
队列也可以数组和链表的结构实现,但与栈相比队列需要头删的操作,所以使用链表的结构实现更优一些,如果使用数组的结构,出队列在数组头上出数据,效率会比较低。
写出一个能够正常使用队列,与栈的实现过程基本相同,首先需要定义好队列的结构体,然后满足数据结构最基本的增删查改的操作。对于队列来说,需要有初始化队列、队尾入队列、队头出队列、获取队列头部元素、获取队列尾部元素、获取队列中有效元素个数、检测队列是否为空、队列的销毁。即下图:
// 链式结构:表示队列
typedef int QDataType;
typedef struct QueueNode
{
struct QueueNode* next;
QDataType data;
}QNode;
typedef struct Queue
{
QNode* head;
QNode* tail;
int size;
}Queue;
// 初始化队列
void QueueInit(Queue* pq);
// 队尾入队列
void QueuePush(Queue* pq, QDataType data);
// 队头出队列
void QueuePop(Queue* pq);
// 获取队列头部元素
QDataType QueueFront(Queue* pq);
// 获取队列队尾元素
QDataType QueueBack(Queue* pq);
// 获取队列中有效元素个数
int QueueSize(Queue* pq);
// 检测队列是否为空,如果为空返回非零结果,如果非空返回0
int QueueEmpty(Queue* pq);
// 销毁队列
void QueueDestroy(Queue* pq);
(1)定义队列的结构体
因为这里我们使用链表实现队列,首先应该定义好每一个节点的结构体。同时队列需要进行头删,尾插,尾删的操作,因此队列的结构体定义head和taill两个结构体指针方便操作
typedef int QDataType;
typedef struct QueueNode
{
struct QueueNode* next;
QDataType data;
}QNode;
typedef struct Queue
{
QNode* head;
QNode* tail;
int size;
}Queue;
(2)队列其余操作
因为队列和栈的操作类似,下面直接给出全部代码
void QueueInit(Queue* pq)
{
assert(pq);
pq->head = pq->tail = NULL;
pq->size = 0;
}
void QueueDestroy(Queue* pq)
{
assert(pq);
QNode* cur = pq->head;
while (cur)
{
QNode* del = cur;
cur = cur->next;
free(del);
}
pq->head = pq->tail = NULL;
}
void QueuePush(Queue* pq, QDataType x)
{
assert(pq);
QNode* newnode = (QNode*)malloc(sizeof(QNode));
if (newnode == NULL)
{
perror("malloc fail");
exit(-1);
}
else
{
newnode->data = x;
newnode->next = NULL;
}
if (pq->tail == NULL)
{
pq->head = pq->tail = newnode;
}
else
{
pq->tail->next = newnode;
pq->tail = newnode;
}
pq->size++;
}
void QueuePop(Queue* pq)
{
assert(pq);
assert(!QueueEmpty(pq));
if (pq->head->next == NULL)
{
free(pq->head);
pq->head = pq->tail = NULL;
}
else
{
QNode* del = pq->head;
pq->head = pq->head->next;
free(del);
del = NULL;
}
pq->size--;
}
QDataType QueueFront(Queue* pq)
{
assert(pq);
assert(!QueueEmpty(pq));
return pq->head->data;
}
QDataType QueueBack(Queue* pq)
{
assert(pq);
assert(!QueueEmpty(pq));
return pq->tail->data;
}
bool QueueEmpty(Queue* pq)
{
assert(pq);
return pq->head == NULL && pq->tail == NULL;
}
int QueueSize(Queue* pq)
{
assert(pq);
/*QNode* cur = pq->head;
int n = 0;
while (cur)
{
++n;
cur = cur->next;
}
return n;*/
return pq->size;
}
(3)队列实现过程应注意的问题
- 进行队尾入队列操作时,每次应该使用malloc等动态内存开辟函数开辟新的节点。
- 销毁队列时与栈相同,不要忘记销毁由动态内存开辟函数开辟出的空间,防止出现内存泄漏,销毁完之后再销毁队列。
- 进行返回队列有效元素个数,判断队列是否为空等操作时与栈相同,不要直接访问结构体数据,一定要通过函数接口访问。
- 进行队头出队列、获取队列头部元素、获取队列尾部元素等操作时,应该注意判断队列是否为空,防止出现错误。判断时可以直接使用自己定义的QueueEmpty函数,这里再次强调第三条的重要性:数据结构一定要通过函数接口访问!
- 其他问题欢迎补充。
三、栈和队列之间的联系
正如我开头所说,栈和队列之间相互联系,可以互相实现。下面让我借用两道oj题来简单解释一下栈和队列的联系。
1.用栈实现队列
请各位先看一看这道题目,自己先动脑思考片刻之后再看我的文章。
https://leetcode.cn/problems/implement-queue-using-stacks/
以下三点解释较为复杂,可以先看图,再回过头来看。
(1)原理:
- 我们通过一个具体的例子来分析往该队列插入和删除元素的过程。首先插入一个元素 a ,我们把它插入 stack1 ,此时 stack1 中的元素有 {a} ,stack2 为空。再压入两个元素 b 和 c ,还是插入 stack1 ,此时 stack1 中的元素有 {a,b,c} ,其中 c 位于栈顶,而 stack2 任然是空的。
- 这个时候我们试着从队列中删除一个元素。按照队列先入先出的规则,由于 a 比 b 、c 先插入队列中,最先被删除的元素应该是 a 。元素 a 存储在 stack1 中但并不在栈顶上,因此不能直接进行删除。注意到 stack2 一直没有被使用过,现在是让 stack2 发挥作用的时候了。如果我们把 stack1 中的元素逐个弹出并压入 stack2,则元素在 stack2 中的顺序正好和原来在 stack1 中的顺序相反,但是却和正常入队列的顺序相同了。因此经过 3 次弹出 stack1 和压入 stack2 的操作之后, stack1 为空, 而 stack2 中的元素是 {c,b,a},这时候就可以弹出 stack2 的栈顶 a 了。
- 从上面的分析中我们可以总结出删除一个元素的步骤:当 stack2 不为空时,在 stack2 中的栈顶元素是最先进入队列的元素,可以弹出。当 stack2 为空时,我们把 stack1 中的元素逐个弹出并压入 stack2 。由于先进入队列的元素被压倒 stack1 的低端,经过弹出和压入操作后就处于 stack2 的顶端,又可以直接弹出。
以上分析解释来自于《剑指offer》,简而言之,用两个栈就可以实现队列的功能。首先定义两个栈pushST和popST,pushST用来入队,popST用来出队。将数据压栈到pushST,pushST出栈,出栈的数据再压栈到popST,即可得到原本是队列形式的顺序了。
(2)具体代码:
明白原理之后,代码实现非常简单,读者自己写代码时一定要注意画图,理清思路后再写代码 ,
可以有效减少bug,同时也方便调试
typedef struct {
ST pushST;
ST popST;
} MyQueue;
MyQueue* myQueueCreate() {
MyQueue* obj = (MyQueue*)malloc(sizeof(MyQueue));
StackInit(&obj->pushST);
StackInit(&obj->popST);
return obj;
}
void pushST_to_popST(MyQueue* obj)
{
if(StackEmpty(&obj->popST))
{
while(!StackEmpty(&obj->pushST))
{
StackPush(&obj->popST,StackTop(&obj->pushST));
StackPop(&obj->pushST);
}
}
}
void myQueuePush(MyQueue* obj, int x) {
pushST_to_popST(obj);
StackPush(&obj->pushST,x);
}
int myQueuePop(MyQueue* obj) {
pushST_to_popST(obj);
int top = StackTop(&obj->popST);
StackPop(&obj->popST);
return top;
}
int myQueuePeek(MyQueue* obj) {
pushST_to_popST(obj);
int top = StackTop(&obj->popST);
return top;
}
bool myQueueEmpty(MyQueue* obj) {
return StackEmpty(&obj->pushST)&&StackEmpty(&obj->popST);
}
void myQueueFree(MyQueue* obj) {
StackDestroy(&obj->pushST);
StackDestroy(&obj->popST);
free(obj);
obj=NULL;
}
2.用队列实现栈
https://leetcode.cn/classic/problems/implement-stack-using-queues/description/
(1)原理
为了满足栈的特性,即最后入栈的元素最先出栈,在使用队列实现栈时,应满足队列前端的元素是最后入栈的元素。可以使用两个队列实现栈的操作。首先,需要A,B两个队列:
- 入栈:对 A 进行入队列
- 出栈:将A中元素加入到B中,当A中就剩一个数据时,出队列即出栈,再交换AB两队列;
- 取栈顶元素:和出栈过程相似,在将A中最后一个元素,记录下来,再入B队列,再交换AB两队列,记录下来的数据就是栈顶元素;
因此,两个队列中始终有一个队列是空,因此定义时可以用empty和nonempty区分。
(2)具体代码:
typedef struct {
Queue q1;
Queue q2;
} MyStack;
MyStack* myStackCreate() {
MyStack* obj = (MyStack*)malloc(sizeof(MyStack));
QueueInit(&obj->q1);
QueueInit(&obj->q2);
return obj;
}
void myStackPush(MyStack* obj, int x) {
if( !QueueEmpty(&obj->q1) )
{
QueuePush(&obj->q1,x);
}
else
{
QueuePush(&obj->q2,x);
}
}
int myStackPop(MyStack* obj) {
Queue* empty = &obj->q1;
Queue* nonempty = &obj->q2;
if( !QueueEmpty(&obj->q1) )
{
empty = &obj->q2;
nonempty = &obj->q1;
}
while( QueueSize(nonempty) > 1 )
{
QueuePush( empty, QueueFront(nonempty) );
QueuePop(nonempty);
}
int top=QueueFront(nonempty);
QueuePop(nonempty);
return top;
}
int myStackTop(MyStack* obj) {
if( !QueueEmpty(&obj->q1) )
{
int top=QueueBack(&obj->q1);
return top;
}
else
{
int top=QueueBack(&obj->q2);
return top;
}
}
bool myStackEmpty(MyStack* obj) {
return QueueEmpty(&obj->q1)&&QueueEmpty(&obj->q2);
}
void myStackFree(MyStack* obj) {
QueueDestroy(&obj->q1);
QueueDestroy(&obj->q2);
free(obj);
obj = NULL;
}
四、循环队列
1.概念
循环队列属于队列的一种,由于循环队列实现难度较大,因为我在这里单独提出,并且目前只说明用数组实现循环队列,链表方式欢迎大佬指导。
可以想象一下,假如我们使用通常的数组。那么在使用过程中,我们是从后面加入数据,从前面移除数据。那么随着出队和入队的进行,数组会整体向右平移,因为数组前面的元素因为出队变成了空白,变得不可使用。造成空间的浪费。如果每出队一次,都将数组向左平移一次,又会很麻烦,造成时间上的浪费。综上,我们使用循环队列,就是将队首和队尾黏在一起。
2.作用
循环队列的一个好处是我们可以利用这个队列之前用过的空间。在一个普通队列里,一旦一个队列满了,我们就不能插入下一个元素,即使在队列前面仍有空间。但是使用循环队列,我们能使用这些空间去存储新的值。
3.注意事项
按照常规队列的实现方法,我们如果采用数组的方式实现,需要有front和back头尾两个指针,front指向队头,back指向队尾的下一个位置。
但是这种实现方式存在一个弊端:无法区分满和空的状态。
对此,我们有两种解决方式:1.加一个size 2.增加一个空间,满的时候永远留一个空位置。
4.具体代码:
typedef struct {
int* a;
int front;
int rear;
int N;
} MyCircularQueue;
bool myCircularQueueIsEmpty(MyCircularQueue* obj);
bool myCircularQueueIsFull(MyCircularQueue* obj);
MyCircularQueue* myCircularQueueCreate(int k) {
MyCircularQueue* obj = (MyCircularQueue*)malloc(sizeof(MyCircularQueue));
obj->a = (int*)malloc(sizeof(int)*(k+1));
obj->front = obj->rear = 0;
obj->N = k+1;
return obj;
}
bool myCircularQueueEnQueue(MyCircularQueue* obj, int value) {
if( myCircularQueueIsFull(obj) )
return false;
obj->a[obj->rear] = value;
obj->rear++;
//控制如果到空间尾之后,rear回到0的位置
obj->rear %= obj->N;
return true;
}
bool myCircularQueueDeQueue(MyCircularQueue* obj) {
if( myCircularQueueIsEmpty(obj) )
return false;
obj->front++;
//控制如果到空间尾之后,rear回到0的位置
obj->front %= obj->N;
return true;
}
int myCircularQueueFront(MyCircularQueue* obj) {
if( myCircularQueueIsEmpty(obj) )
return -1;
return obj->a[obj->front];
}
int myCircularQueueRear(MyCircularQueue* obj) {
if( myCircularQueueIsEmpty(obj) )
return -1;
return obj->a[(obj->rear-1+ obj->N)%obj->N];
}
bool myCircularQueueIsEmpty(MyCircularQueue* obj) {
return obj->front == obj->rear;
}
bool myCircularQueueIsFull(MyCircularQueue* obj) {
return (obj->rear+1)%obj->N == obj->front;
}
void myCircularQueueFree(MyCircularQueue* obj) {
free(obj->a);
obj->a=NULL;
free(obj);
obj=NULL;
}
注意:此文章是个人理解,若是其中有错误或者不足,还希望各位朋友进行指导。