【pytorch】torchvision.transforms 图像的变换详解;图像的预处理;数据增强

本文详细介绍了torchvision.transforms中的图像变换方法,包括ToTensor()、Normalize、RandomRotation、Resize、RandomCrop、RandomResizedCrop、RandomHorizontalFlip和CenterCrop等。这些变换在图像预处理和数据增强中起关键作用,适用于深度学习模型的训练,特别是图像分类任务。同时,文章强调了在使用中需要注意的数据类型转换和归一化操作顺序。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

torchvision.transforms是包含一系列常用图像变换方法的包,可用于图像预处理、数据增强等工作,但是注意它更适合于classification等对数据增强后无需改变图像的label的情况,对于Segmentation等对图像增强时需要同步改变label的情况可能不太实用,需要自己重新封装一下。

官方文档:https://pytorch.org/docs/stable/torchvision/transforms.html

1 torchvision.transforms下的具体操作

先来了解一下几个东西

1.1 ToTensor()

torchvision.transforms.ToTensor()
Convert a PIL Image or numpy.ndarray to tensor.

Converts a PIL Image or numpy.ndarray (H x W x C)(注意C(channel)的位置) in the range [0, 255] to a torch.FloatTenso

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一起来学深度学习鸭

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值