JAVA学习-练习试用Java实现“基于用户的协同过滤 :根据用户相似性进行推荐”

问题:

       java语言编辑,实现基于用户的协同过滤 :根据用户相似性进行推荐。

解答思路:

       基于用户的协同过滤(User-Based Collaborative Filtering)是一种推荐系统算法,它根据用户之间的相似性来推荐物品。以下是一个使用Java实现的简单基于用户的协同过滤推荐系统的示例:

import java.util.*;


public class UserBasedCollaborativeFiltering {


    // 模拟用户评分矩阵

    private static Map<String, Map<String, Integer>> ratings = new HashMap<>();


    static {

        // 用户对电影的评分,键为用户ID,值为一个Map,其中键为电影ID,值为评分

        ratings.put("User1", Map.of(

            "Movie1", 5,

            "Movie2", 3,

            "Movie3", 4

        ));


        ratings.put("User2", Map.of(

            "Movie1", 4,

            "Movie2", 2,

            "Movie3", 1

        ));


        ratings.put("User3", Map.of(

            "Movie1", 3,

            "Movie2", 5,

            "Movie3", 4

        ));


        ratings.put("User4", Map.of(

            "Movie1", 2,

            "Movie2", 4,

            "Movie3", 5

        ));

    }


    public static void main(String[] args) {

        String targetUser = "User2";

        List<String> recommendedMovies = recommendMovies(targetUser);


        System.out.println("Recommended movies for " + targetUser + ":");

        recommendedMovies.forEach(System.out::println);

    }


    private static List<String> recommendMovies(String targetUser) {

        List<String> recommendedMovies = new ArrayList<>();

        double maxSimilarity = 0;


        // 计算与目标用户最相似的其他用户

        for (String user : ratings.keySet()) {

            if (!user.equals(targetUser)) {

                double similarity = calculateCosineSimilarity(ratings.get(targetUser), ratings.get(user));

                if (similarity > maxSimilarity) {

                    maxSimilarity = similarity;

                    recommendedMovies.clear();

                    recommendedMovies.add(user);

                } else if (similarity == maxSimilarity) {

                    recommendedMovies.add(user);

                }

            }

        }


        // 推荐相似用户喜欢的,但目标用户未评分的电影

        for (String user : recommendedMovies) {

            for (Map.Entry<String, Integer> rating : ratings.get(user).entrySet()) {

                String movie = rating.getKey();

                if (!ratings.get(targetUser).containsKey(movie)) {

                    recommendedMovies.add(movie);

                }

            }

        }


        return recommendedMovies;

    }


    private static double calculateCosineSimilarity(Map<String, Integer> user1, Map<String, Integer> user2) {

        double dotProduct = 0.0;

        double magnitude1 = 0.0;

        double magnitude2 = 0.0;


        for (String key : user1.keySet()) {

            if (user2.containsKey(key)) {

                dotProduct += user1.get(key) * user2.get(key);

                magnitude1 += Math.pow(user1.get(key), 2);

                magnitude2 += Math.pow(user2.get(key), 2);

            }

        }


        return dotProduct / (Math.sqrt(magnitude1) * Math.sqrt(magnitude2));

    }

}

       在这个例子中,我们首先创建了一个用户评分矩阵,然后实现了一个基于用户的协同过滤推荐系统。以下是程序的主要步骤:

       1. 初始化用户评分矩阵。

       2. 实现一个方法来推荐与目标用户最相似的其他用户喜欢的电影。

       3. 计算用户之间的余弦相似度,余弦相似度用于衡量两个用户之间的相似程度。

       4. 找出与目标用户最相似的其他用户,并推荐这些用户喜欢的电影,但目标用户未评分的电影。

       5. 输出推荐的电影列表。

       在'main'方法中,我们指定了一个目标用户('User2'),然后调用'recommendMovies'方法来获取推荐的电影列表,并将结果打印出来。

       需要注意,这个示例仅用于演示目的,它使用了非常简化的数据集。在实际应用中,评分矩阵会更加复杂,并且需要考虑更多的因素。此外,余弦相似度只是多种相似度度量方法中的一种,根据具体情况,可能需要使用不同的相似度计算方法。

(文章为作者在学习java过程中的一些个人体会总结和借鉴,如有不当、错误的地方,请各位大佬批评指正,定当努力改正,如有侵权请联系作者删帖。)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值