电瓶车充电桩火灾智能防控方案

电动车充电桩AI火灾防控

目录

一、项目背景与目标

        1.1 项目背景

        1.2 项目目标

二、AI智能分析系统架构设计

        2.1 系统总体架构

        2.2 感知层设计

        2.3 传输层设计

        2.4 平台层(智能分析层)设计

        2.5 控制层设计

        2.6 实施效果

三、总结与展望


一、项目背景与目标

        1.1 项目背景

        近年来,随着电动自行车的普及,其充电安全问题愈发受到社会关注。据统计,近年来电动自行车火灾案件呈逐年快速攀升态势。其中,80%的火情发生在充电环节,超半数集中于夜间充电过程中。这些火灾事故不仅给居民生活带来了极大的困扰,更对生命财产安全构成了严重威胁。非标电动车的泛滥、电池老化等问题的存在,进一步放大了充电过程中的安全风险。

        痛点

  • 状态不清楚:对充电过程中的状态无法实时感知,缺乏有效手段及时发现可能存在的安全隐患,隐患发现不及时。
  • 底数不清楚:不掌握辖区内电动车安全状态的数据,电池老化催换等专项行动决策无数据支持,决策支持无依据。
  • 管理不统一:建设标准不统一,数据分散于各个系统,导致管理无法统一,安全防范无合力。

        1.2 项目目标

        本项目旨在通过构建一套AI智能分析系统,结合物联网技术,实现对电瓶车充电桩的全面监控与火灾预警,提升充电场景的安全管控效能。具体目标包括:

  • 实时监测:对充电过程中的状态进行实时感知,及时发现并处理安全隐患。
  • 数据整合:整合各充电车棚的物联网监测数据及充电桩运营商的运营数据,为决策提供数据支持。
  • 统一管理:实现全区充电区域的标准化建设,提升管理效率与安全性。
  • 智能预警:通过AI分析,提前预警潜在火灾风险,形成“监测-预警-处置”的快速响应闭环。

二、AI智能分析系统架构设计

        2.1 系统总体架构

        本系统采用四层架构设计,包括感知层、传输层、平台层(智能分析层)和控制层,确保数据的全面采集、高效传输、智能分析与及时处置。

        2.2 感知层设计

        智能终端部署

  • 智能烟火摄像头:部署在充电车棚关键位置,利用高清视频监控与AI视觉识别技术,实时捕捉现场火情。通过视频分析,能够准确识别烟雾、火焰等初期火灾特征。
  • 烟感装置:安装于充电区域,通过烟雾浓度检测,及时发现初期火灾。烟感装置具有高灵敏度,能够在火灾初期迅速响应。
  • 声光告警设备:与智能终端联动,一旦发现异常立即触发声光报警,提醒人员疏散。声光告警设备具有明显的警示效果,能够迅速引起人员注意。
  • 喷淋灭火系统智能化升级:对现有喷淋系统进行智能化改造,实现远程控制与联动响应。在火灾发生时,能够迅速启动喷淋系统,控制火势蔓延。

        传感器选择

  • 选择高精度、低误报率的传感器,确保数据的准确性与可靠性。传感器应具备防水、防尘、耐高温等特性,以适应充电车棚复杂环境。

        2.3 传输层设计

        无线通信技术选型

  • 采用LoRa、NB-IoT等低功耗广域网技术,确保数据在复杂环境下的稳定传输。这些技术具有覆盖范围广、功耗低、成本低等优点。
  • 考虑使用5G技术作为补充,提升大数据量传输效率。5G技术具有高速率、低时延等特点,能够满足实时性要求较高的应用场景。

        数据传输协议与安全性

  • 采用MQTT、CoAP等轻量级物联网传输协议,减少数据传输量,提高传输效率。这些协议具有简单、高效、易于实现等优点。
  • 实施数据加密与身份认证机制,确保数据传输过程中的安全性。通过加密技术,能够防止数据在传输过程中被窃取或篡改。

        2.4 平台层(智能分析层)设计

        平台架构与功能模块

  • 数据接入与处理模块:负责接收来自感知层的数据,进行清洗、去噪与存储。确保数据的完整性和准确性,为后续分析提供可靠的数据基础。
  • 风险监测与分析模块:利用AI算法对数据进行实时分析,识别潜在火灾风险。通过机器学习、深度学习等技术,能够自动学习火灾特征,提高火灾识别的准确率。
  • 预警与处置模块:根据分析结果,生成预警信息并推送至相关人员,同时联动控制层进行早期火情处置。实现预警信息的及时传递和处置措施的迅速执行。
  • 第三方系统对接模块:实现与充电桩运营商系统、消防部门系统等的对接,共享数据资源。通过数据共享,能够提升整体安全防范能力。

        AI算法选择与应用

  • 目标检测算法:用于识别充电车棚内的电动车、人员等目标,监测异常行为。如电动车乱停乱放、人员违规操作等。
  • 火灾识别算法:基于视频图像与传感器数据,利用深度学习技术识别初期火灾。通过训练模型,能够准确识别烟雾、火焰等火灾特征。
  • 预测分析算法:结合历史数据与实时数据,预测火灾发生概率,提前采取防范措施。通过预测分析,能够降低火灾发生的风险。

        数据可视化与报表生成

  • 提供直观的数据可视化界面,展示充电区域的安全状态、火灾风险分布等信息。通过图表、地图等形式,能够直观地了解安全状况。
  • 生成定期报表,为决策提供数据支持。报表内容应包括火灾发生情况、隐患排查情况、处置措施执行情况等。

        2.5 控制层设计

        联动控制机制

  • 一旦发现异常,立即触发声光报警,并联动喷淋系统启动早期火情处置。通过联动控制,能够实现火灾的快速响应和有效处置。
  • 与电磁水阀等消防设备联动,形成“发现-告警-处置”的闭环控制。确保在火灾发生时,能够迅速切断电源、启动灭火设备等。

        远程控制与应急响应

  • 提供远程控制功能,允许管理人员在远程对充电设备进行启停、参数调整等操作。提高管理效率,降低现场操作的风险。
  • 制定应急响应预案,明确在火灾发生时的处置流程与责任分工。确保在火灾发生时,能够迅速、有序地进行处置。

        2.6 实施效果

  • 提升了告警准确性:通过AI感知与物联感知的双重验证,提高了火灾预警的准确性。减少了误报和漏报的情况,提高了安全防范能力。
  • 实现了标准化建设:推动全区充电区域的标准化建设,提升了管理效率与安全性。统一了建设标准和管理流程,降低了管理成本。
  • 提供了数据支持:掌握了辖区超标电动车、老化电池的基数,为决策提供了数据支持。通过数据分析,能够制定更加科学合理的决策。
  • 形成了快速响应闭环:构建了“监测-预警-处置”的快速响应闭环,主动防火灾。在火灾发生时,能够迅速响应并有效处置,降低了火灾损失。

三、总结与展望

        本项目通过构建AI智能分析系统,结合物联网技术,实现了对电瓶车充电桩的全面监控与火灾预警。系统采用了先进的AI感知与物联感知技术,提升了告警的准确性和安全管控效能。未来,随着技术的不断发展,我们将持续优化系统性能,提升数据分析能力,为电动自行车充电安全提供更加坚实的保障。同时,我们也期待与更多合作伙伴携手,共同推动电动自行车充电安全领域的技术进步与应用普及。


文章正下方可以看到我的联系方式:鼠标“点击”下面的“威迪斯特-就是video system微信名片”字样,就会出现我的二维码欢迎沟通探讨


评论 1
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值