一、算法概念
蚁群算法(Ant Colony Optimization,ACO)是一种启发式算法,灵感来源于蚂蚁在寻找食物时的行为。蚂蚁在寻找食物时,会沿着路径不断地移动,路径上留下信息素。当其他蚂蚁经过这条路径时,它们会被留下的信息素所吸引,选择该路径的概率会增加。逐渐地,所有的蚂蚁都会聚集到最优路径上,从而找到问题的最优解。
我个人的理解:我们只是打个比方,蚂蚁去找吃的,肯定是路径越短越好。那第一个蚂蚁找到较为近的路,就会留下信息素,后面的蚂蚁一闻,这路不错,然后这蚂蚁就跟着走,走着走着到了个岔口,前面探路的蚂蚁一个觉得右边近,一个觉得左边近,那后面这个蚂蚁就先随便选一个,然后发现确实右边的近一些,就会在右边留下他的信息素,告诉以后要来的蚂蚁,确实右边好一些,如此一来,信息素就会大量集中到最优路径上,最终选出来最短的路径。
(但是蚂蚁也要有一些有探索性,假如前面的蚂蚁一开始就选错了路,那就一错再错,错到底了,这时需要有蚂蚁站出来,自己探索一下新的路,以免掉入局部最优解的陷阱。)
下面说几个蚁群算法的相关概念(看不懂没关系,可以结合下面的代码了解):
①蚂蚁群体:算法中包含一群虚拟蚂蚁,它们通过模拟蚂蚁的行为来解决优化问题。
②路径选择:蚂蚁在解决问题时会根据信息素浓度选择路径,通常,信息素浓度高的路径有可能被选择,但蚂蚁也具有一定的探索性,以防止陷入局部最优解。(路径选择概率计算我下面会解释)
③信息素更新:蚂蚁经过一条路径后,会根据路径的质量(比如解的优劣)来更新路径上的信息素浓度。一般来说,优质路径上的信息素增加,而不优质路径上的信息素减少。
④全局搜索和局部搜索:蚁群算法进行全局搜索和局部搜索。全局搜索通过蚂蚁的探索性行为来寻找新的解决方案,而局部搜索通过信息素引导来加强较优解附近的搜索。
⑤参数设置:蚁群算法有一些参数需要设置,如信息素挥发率、信息素增加量、启发式函数等,这些参数的设置会影响算法的性能。(信息素挥发率不会一直在路上,会慢慢挥发掉)
相关数学知识可以参考这篇文章:蚁群算法
python实现可以参考这篇文章:python实现蚁群算法
二、算法流程
假设用蚁群算法来解决TSP问题,也就是旅行商(拜访几个城市,全部拜访不重复且路径最短)
1.初始化参数
设置了蚂蚁数量、迭代次数、城市数量,以及信息素重要程度、启发式因子重要程度、信息素挥发因子和信息素常数等参数。
(这些相关参数后面都会用来算信息素,而这些信息素也决定了后续蚂蚁选择这条路的概率)
2.初始化信息素
将所有城市间的信息素初始化为1,表示初始状态下每条路径的权重都一样重要。
(在后续对信息素的更新中,信息素越大说明这条路被选中的概率也就越大)
3.初始化蚂蚁位置
随机将每只蚂蚁放置在一个城市中。
4.移动蚂蚁
蚂蚁按照一定的规则选择下一个要访问的城市,并更新其位置。
(这里所说的一定规则就是根据信息素决定前往每个城市的概率)
prob(l) = pheromone(curr_city, next_city)^alpha * (1/dist(curr_city, next_city))^beta
这段代码是用来计算蚂蚁选择下一个城市的概率。让我详细解释一下:
蚂蚁在选择下一个要访问的城市时,会根据当前所在城市到其他未访问城市的信息素浓度和启发式因子来做出决策。具体来说,prob(l) 表示蚂蚁选择第 l 个未访问城市的概率。
其中:
- pheromone(curr_city, next_city) 表示从当前城市到下一个城市的信息素浓度,信息素浓度高表示路径被其他蚂蚁频繁选择,概率也相应增大。
- dist(curr_city, next_city) 表示当前城市到下一个城市的距离,距离越短意味着路径的吸引力更大,概率也相应增大。
- alpha 和 beta 分别为信息素重要程度和启发式因子重要程度,用于调节信息素和启发式因子对蚂蚁选择的影响程度。(可以自己根据情况进行修改)
通过以上公式计算,蚂蚁会倾向于选择信息素浓度高、距离短的路径作为下一个要访问的城市,从而朝着全局最优解的方向前进。
5.计算路径长度和适应度
根据蚂蚁的位置计算其所经过路径的长度,并计算适应度。
就是把每个城市间的路径长度加起来,最后取个倒数就是适应度了,也就是路径长度越长,适应度越小,这样在最后选出来适应度最大的,就能找到最优路径了。
6.更新信息素
根据蚂蚁的路径长度更新信息素。
delta_pheromone(curr_city, next_city) = delta_pheromone(curr_city, next_city) + Q/path_length(j);
上述代码就是对更新信息素浓度的计算,我详细解释一下:
delta_pheromone(curr_city, next_city) 表示当前蚂蚁经过的路径上的信息素增量,Q 是一信息素常数,path_length(j) 是蚂蚁所经过路径的长度。这段代码的作用是将蚂蚁所经过路径的信息素增量累加到原有的信息素浓度上。
在蚁群算法中,蚂蚁经过的路径上会释放信息素,而信息素释放的数量与路径的长度成反比,即路径长度越短,则释放的信息素越多。因此,通过累加蚂蚁所经过路径的信息素增量到原有信息素浓度上,可以实现对信息素的更新,从而影响下一轮蚂蚁的路径选择。
这种机制能够使得经过较优路径的信息素浓度得到增强,进而引导其他蚂蚁更有可能选择这些路径,最终推动整个蚁群向着更优解的方向前进。
三、算法应用
-
旅行商问题(Traveling Salesman Problem, TSP):蚁群算法最初就是为了解决TSP而提出的,可以用于求解旅行商访问多个城市的最短路径。
-
路径规划:蚁群算法可以用于解决路径规划问题,如无人机、机器人等的路径规划,以及交通流量优化等。
-
图着色问题:蚁群算法可以用于解决图着色问题,即给定一个图,如何用最少的颜色对图中的节点进行着色,使得相邻节点的颜色不同。
-
任务调度:蚁群算法可以应用于任务调度问题,例如在分布式系统中,如何合理地将任务分配给各个处理节点,以最大化系统的性能。
-
约束优化问题:蚁群算法可以用于求解约束优化问题,例如工程设计中的参数优化、资源分配问题等。
-
数据聚类:蚁群算法可以用于数据聚类问题,通过模拟蚂蚁的搜索行为,找到数据点之间的聚类结构。
-
组合优化问题:蚁群算法可以用于解决组合优化问题,如背包问题、装箱问题等,通过蚂蚁的路径选择和信息素更新来求解最优解。
蚁群算法还可以用于其他许多优化问题,如电力系统优化、物流问题、机器学习中的特征选择等。蚁群算法的优势在于其分布式、自适应的特性,适用于复杂问题的求解。
但是我需要提一嘴,蚁群算法更适合离散优化,虽然也能处理连续,但是效果不如梯度下降法、牛顿法、遗传算法等。
四、算法优缺点
1.算法优点
①分布式求解:蚁群算法是一种基于个体协作的分布式算法,蚂蚁通过局部信息和相互通信来实现全局搜索,具有良好的可扩展性和适应性。
②自适应性:蚁群算法通过信息素的更新和挥发机制,能够自适应地调整搜索行为,对环境的变化有较强的适应性。
③全局搜索能力:蚁群算法通过随机性的路径选择和信息素的引导,具有较强的全局搜索能力,能够在复杂的搜索空间中找到较优解。
④鲁棒性:蚁群算法对问题的约束条件和目标函数形式没有特别严格的要求,可以适用于多种优化问题。
2.算法缺点
①收敛速度:蚁群算法的收敛速度较慢,特别是在复杂问题或大规模问题上,可能需要较长的时间才能找到较优解。
②局部最优解:蚁群算法在搜索过程中容易陷入局部最优解,特别是在问题具有多个局部最优解的情况下,可能无法找到全局最优解。
③参数调节:蚁群算法中的参数选择对算法性能影响较大,需要进行适当的参数调节才能获得较好的结果。
④对问题表示的依赖性:蚁群算法对问题的表示方式较为敏感,问题的表示方式不合理或信息素更新策略不当可能导致算法性能下降。
⑤计算资源需求:蚁群算法在处理大规模问题时,由于需要维护和更新大量的信息素,可能需要较大的计算资源和存储空间。
五、算法代码
% 初始化参数,处理TSP问题,我们还使用启发式因子来指导蚂蚁选择下一个城市的概率
num_ants = 50; % 蚂蚁数量
num_iter = 100; % 迭代次数
num_cities = 10; % 城市数量
alpha = 1; % 信息素重要程度
beta = 2; % 启发式因子重要程度
rho = 0.5; % 信息素挥发因子
Q = 100; % 信息素常数
dist = rand(num_cities, num_cities); % 城市间距离矩阵
%% 初始化信息素(初始都为1,可以理解为权重,初始每条路都一样重要,后面在迭代中就慢慢发生变化了)
pheromone = ones(num_cities, num_cities);%X = ones(sz1,...,szN) 返回由 1 组成的 sz1×...×szN 数组
% 迭代
for i = 1:num_iter
%% 初始化蚂蚁位置
ant_pos = zeros(num_ants, num_cities);
for j = 1:num_ants
ant_pos(j, 1) = randi(num_cities);%X = randi(imax) 返回一个介于 1 和 imax 之间的伪随机整数标量
end
%% 移动蚂蚁
for j = 2:num_cities
for k = 1:num_ants
% 计算选择下一个城市的概率
curr_city = ant_pos(k, j-1);
unvisited_cities = setdiff(1:num_cities, ant_pos(k, 1:j-1));%C = setdiff(A,B) 返回 A 中存在但 B 中不存在的数据,不包含重复项。C 是有序的。
prob = zeros(1, length(unvisited_cities));
for l = 1:length(unvisited_cities)
next_city = unvisited_cities(l);
prob(l) = pheromone(curr_city, next_city)^alpha * (1/dist(curr_city, next_city))^beta;%计算蚂蚁选择下一个城市的概率
end
prob = prob / sum(prob);%归一化处理
% 选择下一个城市(也就是通过轮盘赌的方式,按照概率选出下一城市)
next_city_idx = randsample(length(unvisited_cities), 1, true, prob);%y = randsample(population,k,true,w) 使用与向量 population 长度相同的非负权重向量 w 来确定值 population(i) 被选为 y 的输入项的概率。
ant_pos(k, j) = unvisited_cities(next_city_idx);
end
end
%% 计算路径长度和适应度
path_length = zeros(num_ants, 1);
for j = 1:num_ants
for k = 1:num_cities-1
path_length(j) = path_length(j) + dist(ant_pos(j, k), ant_pos(j, k+1));
end
path_length(j) = path_length(j) + dist(ant_pos(j, end), ant_pos(j, 1));
end
%根据路径长度算出来适应度,适应度函数来评估每个解(路径)的质量,并根据适应度值来影响信息素的释放和更新过程
fitness = 1 ./ path_length;%(这里适应度并没有用到,其实可以用来代替下面的Q/path_length(j))
%% 更新信息素
delta_pheromone = zeros(num_cities, num_cities);
for j = 1:num_ants
for k = 1:num_cities-1
curr_city = ant_pos(j, k);
next_city = ant_pos(j, k+1);
delta_pheromone(curr_city, next_city) = delta_pheromone(curr_city, next_city) + Q/path_length(j);%这样路径越长,信息素就越小,
end
curr_city = ant_pos(j, end);
next_city = ant_pos(j, 1);
delta_pheromone(curr_city, next_city) = delta_pheromone(curr_city, next_city) + Q/path_length(j);
end
pheromone = (1-rho)*pheromone + delta_pheromone;
end
%%显示结果
best_fitness = max(fitness)%显示最大适应度
min_rows = find(fitness==best_fitness)%最大适应度所在行
best_path = ant_pos(min_rows,1:end)%与最大适应度对应的最优路径