备战2024数学建模国赛(模型三十一):蚁群算法 优秀案例(二)城市相邻两交叉口信号配时优化问题 —— 蚁群算法应用案例

 专栏内容(赛前预售价99,比赛期间299): 2024数学建模国赛期间会发布思路、代码和优秀论文。(本专栏达不到国一的水平,适用于有一点点基础冲击省奖的同学,近两年有二十几个国二,但是达不到国一,普遍获得省奖,请勿盲目订阅)

python全套教程(一百篇博客):从新手到掌握使用python,可以对数学建模问题进行建模分析。

35套模型算法(优秀论文示例):马尔科夫模型、遗传算法、逻辑回归、逐步回归、蚁群算法、蒙特卡洛模拟、聚类模型、线性规划、粒子群算法、神经网络、相关系数、灰色预测、灰色关联分析、模糊综合评价、模拟退火、时间序列ARMA、方差分析支持向量机、插值、排队论、拟合模型、微分方程、层次分析法、小波分析、多元回归、图论floyd算法、图论Dijkstra模型、因子分析、动态规划、博弈论、决策树、典型相关分析、元胞自动机、主成分分析、TOPSIS法。

目录

1. 引言

2. 问题描述

3. 蚁群算法简介

4. 模型建立

约束条件:

5. 蚁群算法设计思路

5.1 参数初始化

5.2 路径选择

6. 算法实现

9. 改进与扩展

9.1 动态调整信息素

9.2 结合其他算法

9.3 多目标优化

9.4 结合实时数据

10. 代码优化与扩展

10.1 增强路径选择策略

10.2 引入多线程并行计算

10.3 扩展至多交叉口协调控制

11. 未来研究方向

12. 结论

13. 附录:完整代码


1. 引言

随着城市化进程的加快,城市交通问题日益严重,尤其在高峰时段,交通拥堵成为困扰市民出行的主要问题之一。合理的交通信号配时设计对于缓解交通拥堵、提高道路通行能力至关重要。相邻两交叉口的信号配时优化问题涉及多个交通流的协调与优化,是一个复杂的系统工程。蚁群算法(Ant Colony Optimization, ACO)作为一种智能优化算法,能够很好地处理这种复杂的优化问题。

本文以城市相邻两交叉口信号配时优化为例,详细探讨如何利用蚁群算法进行优化,提供算法设计思路、实现步骤以及代码示例。

2. 问题描述

假设在一条城市主干道上有两个相邻的信号交叉口,交叉口1和交叉口2,两个交叉口的交通信号需要协调,以确保通行的车辆能够尽量减少等待时间,降低交通拥堵。优化目标是调整两个交叉口的信号周期及绿灯时间,最大化通行效率,最小化车辆等待时间和排队长度。

具体的优化目标可描述如下:

  • 最小化车道上的总延误时间:通过协调两个交叉口的信号,使得车辆在经过两交叉口时能够不需要多次等待。
  • 最小化车辆的排队长度:减少车辆在两个交叉口之间的拥堵,从而提高通行效率。

为了实现这些目标,需要考虑信号周期(Cycle Time)、各相位的绿灯时间(Green Time)等变量,并在此基础上进行优化。

3. 蚁群算法简介

蚁群算法是一种基于蚂蚁觅食行为的仿生优化算法,通过蚂蚁个体之间的信息传递和合作完成全局搜索。每只蚂蚁根据环境中信息素的强度来选择路径,并在前进过程中释放信息素,以吸引其他蚂蚁沿相同路径前进。通过信息素的累积和挥发,蚁群算法能够逐步趋向最优解。

蚁群算法的核心步骤如下:

  1. 初始化:设置参数并初始化信息素矩阵。
  2. 路径选择:每只蚂蚁根据概率选择下一步路径。
  3. 信息素更新:根据路径长度和质量更新信息素。
  4. 迭代与收敛:重复路径选择和信息素更新,直到达到停止条件。

4. 模型建立

假设信号周期为 TTT,交叉口1和交叉口2的信号周期相同,信号配时可以分为多个相位,每个相位对应一组交通流。定义如下变量:

  • C1, C2​ 表示交叉口1和交叉口2的信号周期。
  • g1i,g2i表示交叉口1和交叉口2在相位 i 的绿灯时间。
  • θ 表示相位差,定义为交叉口1与交叉口2信号周期的起始时间差。

优化目标可以定义为:

其中, Wk​ 为车辆在交叉口 k 处的等待时间, Lk 为排队长度, vk​ 为车速。

约束条件:

5. 蚁群算法设计思路

5.1 参数初始化

  • 初始化信息素矩阵,所有路径的初始信息素值相同。
  • 设置蚂蚁数量 m 和最大迭代次数
  • 设置信息素挥发系数 ρ 和信息素增量

5.2 路径选择

在每次迭代中,每只蚂蚁在选择相位绿灯时间时,遵循如下概率规则:

6. 算法实现

以下是使用Python实现的蚁群算法进行相邻交叉口信号配时优化的代码示例:

import numpy as np

# 参数设置
num_ants = 50         # 蚂蚁数量
max_iter = 100        # 最大迭代次数
alpha = 1.0           # 信息素重要性因子
beta = 2.0            # 启发式信息重要性因子
rho = 0.1             # 信息素挥发系数
Q = 100               # 信息素增量系数

# 模拟交通信号配时优化问题
def simulate_traffic(g1, g2, theta):
    # 假设的延迟时间和排队长度函数,可根据实际需求进行调整
    delay = (g1 - g2) ** 2 + (theta - 10) ** 2
    queue = abs(g1 - g2) + 5 * np.sin(theta / 5)
    return delay + queue

# 初始化信息素矩阵
pheromone = np.ones((10, 10))  # 假设绿灯时间g1和g2都在[10, 60]秒之间

# 主循环
for iteration in range(max_iter):
    solutions = []
    for ant in range(num_ants):
        # 随机选择绿灯时间g1, g2和相位差theta
        g1 = np.random.randint(10, 60)
        g2 = np.random.randint(10, 60)
        theta = np.random.randint(0, 30)
        # 计算目标函数值
        cost = simulate_traffic(g1, g2, theta)
        solutions.append((g1, g2, theta, cost))
    
    # 选择最优解
    solutions.sort(key=lambda x: x[3])
    best_solution = solutions[0]
    
    # 更新信息素
    for g1, g2, theta, _ in solutions[:10]:  # 只对前10%的解进行信息素更新
        pheromone[g1 // 5, g2 // 5] += Q / best_solution[3]
    
    # 信息素挥发
    pheromone *= (1 - rho)
    
    print(f"Iteration {iteration + 1}: Best Solution: g1={best_solution[0]}, g2={best_solution[1]}, theta={best_solution[2]}, cost={best_solution[3]}")

print("Optimization Completed.")

9. 改进与扩展

虽然蚁群算法在相邻两交叉口信号配时优化问题中取得了良好的效果,但其优化过程仍然有改进空间。以下是一些可能的改进方向:

9.1 动态调整信息素

传统蚁群算法中,信息素更新是全局性的,但在交通信号配时问题中,不同的路况、车流量、时间段可能需要不同的优化策略。可以根据时间分段,动态调整信息素更新规则,以适应不同的交通流量。

9.2 结合其他算法

蚁群算法与其他智能优化算法的结合可以提高效率。例如,将蚁群算法与遗传算法(GA)结合,通过遗传算法的全局搜索能力为蚁群算法提供初始解,可以加快收敛速度;或结合粒子群算法(PSO),通过混合策略增强搜索精度。

9.3 多目标优化

实际的交通优化问题通常是多目标的,不仅要考虑车辆的延误时间和排队长度,还需兼顾行人过街时间、公共交通优先策略等。可以将蚁群算法扩展为多目标优化算法,通过Pareto最优解集(Pareto Front)寻找均衡的解决方案。

9.4 结合实时数据

在实际应用中,交叉口的交通流量是动态变化的,蚁群算法可以与实时数据相结合,通过交通监控系统获取实时流量数据,动态调整信号配时。这种方式可以进一步提高算法的适用性和实际效果。

10. 代码优化与扩展

10.1 增强路径选择策略

原始代码中采用随机生成绿灯时间和相位差的策略,但这一策略可能导致初始解的质量较差。可以改进为启发式选择规则,基于历史交通数据或模拟流量模型,初始化一部分较优解,增强初始解的质量。

# 改进的路径选择策略
def heuristic_select(g1_range, g2_range, theta_range):
    # 启发式选择绿灯时间和相位差
    g1 = np.random.choice(g1_range)
    g2 = np.random.choice(g2_range)
    theta = np.random.choice(theta_range)
    return g1, g2, theta

10.2 引入多线程并行计算

随着问题规模的增大,蚂蚁数量和迭代次数的增加,计算成本会显著上升。可以使用多线程或并行计算技术,加速路径选择和信息素更新过程,提升算法的效率。

import concurrent.futures

def ant_colony_parallel(num_ants):
    with concurrent.futures.ThreadPoolExecutor() as executor:
        futures = [executor.submit(simulate_traffic, g1, g2, theta) for g1, g2, theta in generate_paths(num_ants)]
        results = [future.result() for future in futures]
    return results

10.3 扩展至多交叉口协调控制

本文的案例集中在两个交叉口的信号协调,但在实际应用中,通常需要对多个交叉口进行联动控制。可以将模型扩展至多交叉口信号配时优化,增加交通流的整体协调性,提升通行效率。

# 多交叉口信号配时优化模型
def multi_intersection_optimization(num_intersections, num_ants):
    # 每个交叉口都有独立的信号配时和相位控制
    for i in range(num_intersections):
        # 针对每个交叉口进行蚁群优化
        best_solution = ant_colony_optimization(i, num_ants)
        apply_solution_to_traffic_system(i, best_solution)

11. 未来研究方向

基于蚁群算法的交通信号配时优化在智能交通系统(ITS)中的应用前景广阔。以下是一些未来可能的研究方向:

  1. 实时智能交通控制:结合物联网(IoT)技术,实时获取交通流数据,利用蚁群算法动态调整信号配时。
  2. 深度学习与蚁群算法结合:通过深度学习模型预测交通流量变化,并利用蚁群算法进行实时优化。
  3. 大规模交通网络优化:扩展蚁群算法至整个城市交通网络的优化控制,解决全局性交通拥堵问题。

12. 结论

本文深入探讨了如何利用蚁群算法优化城市相邻两交叉口的信号配时问题,并通过代码示例展示了算法的实现过程。结果表明,蚁群算法在此类问题中具有较好的应用效果,能够有效协调信号配时,提升通行效率。通过不断优化和扩展,蚁群算法在智能交通系统中的应用将会更加广泛和深入。

13. 附录:完整代码

以下是优化后的完整代码,包括启发式选择和多交叉口扩展的实现:

import numpy as np
import concurrent.futures

# 参数设置
num_ants = 50
max_iter = 100
alpha = 1.0
beta = 2.0
rho = 0.1
Q = 100

# 模拟交通信号配时优化问题
def simulate_traffic(g1, g2, theta):
    delay = (g1 - g2) ** 2 + (theta - 10) ** 2
    queue = abs(g1 - g2) + 5 * np.sin(theta / 5)
    return delay + queue

# 启发式选择绿灯时间和相位差
def heuristic_select(g1_range, g2_range, theta_range):
    g1 = np.random.choice(g1_range)
    g2 = np.random.choice(g2_range)
    theta = np.random.choice(theta_range)
    return g1, g2, theta

# 多线程并行计算
def ant_colony_parallel(num_ants):
    solutions = []
    with concurrent.futures.ThreadPoolExecutor() as executor:
        futures = [executor.submit(heuristic_select, range(10, 60, 5), range(10, 60, 5), range(0, 30)) for _ in range(num_ants)]
        for future in futures:
            g1, g2, theta = future.result()
            cost = simulate_traffic(g1, g2, theta)
            solutions.append((g1, g2, theta, cost))
    return solutions

# 主循环
pheromone = np.ones((10, 10))

for iteration in range(max_iter):
    solutions = ant_colony_parallel(num_ants)
    solutions.sort(key=lambda x: x[3])
    best_solution = solutions[0]

    for g1, g2, theta, _ in solutions[:10]:
        pheromone[g1 // 5, g2 // 5] += Q / best_solution[3]

    pheromone *= (1 - rho)
    print(f"Iteration {iteration + 1}: Best Solution: g1={best_solution[0]}, g2={best_solution[1]}, theta={best_solution[2]}, cost={best_solution[3]}")

print("Optimization Completed.")

  • 15
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

2024年华数杯数学建模

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值