欧拉筛法详解

一,简介:欧拉筛法是一种线性筛,是筛选素数高效方法不重复筛选),合数都被最小素因子筛去。

二,图码详解

integer0123456789
tagfalsefalsefalsefalsetruefalsetruefalsetruetrue
primes2357

integer

10111213141516171819
tagtruefalsetruefalsetruetruetruefalsetruefalse
primes
intager20212223242526272829
tagtruetruetruefalsetruetruetruetruetruefalse
primes

for (int i = 2; i <= n; i++)循环遍历前n个数当i指向2,判断是否是合数(if (!hs[i])

如果不是,即2存入primes[0]中。

for (int j = 0; primes[j] * i <= n; j++)遍历素数//primes[i]<=n限制出界(出界不用标记)

hs[primes[j] * i] =true//  即hs[2*2]=true标记合数

素数乘一个非零数得到的为合数  例如2*3=6,6为合数

i指向3,存入primes[1]中      用ha[prinmes[j]*i]标记2*3,3*3

i指向4,if (!hs[i])判断为合数不存。用for (int j = 0; primes[j] * i <= n; j++)遍历素数,

hs[primes[j] * i] =true标记合数//2*4,注意不标记3*4,if (i % primes[j] == 0)break;//若primes[i]是合数i的最小素因子结束本轮遍历。防止重复标记12用最小质因子2标记即2*6。

i指向5,存入primes[2]中。 用ha[prinmes[j]*i]标记2*5,3*5,5*5

i指向6if (!hs[i])判断为合数不存。遍历素数,标记合数2*6

i指向7存入primes[3]用ha[prinmes[j]*i]标记2*7,3*7|

 primes[j] * i <= n(故5*7,7*7不遍历)

后面以此类推。。。。

三,代码展示

#include<iostream>
#include<ctime>
using namespace std;

int primes[1000000];//用来储存素数
int tag[1000000];//用来做标记储存合数
int k = 0;
int main()
{
	int n; cin>>n;
	double s = clock();//检测时间起始位置
	for (int i = 2; i <= n; i++) {
		if (!tag[i])primes[k++] = i;//如果h[i]即i为非合数存入素数i
		for (int j = 0; primes[j] * i <= n; j++)//primes[i]<=n限制出界(出界不用标记)
		{
			tag[primes[j] * i] =true;//合数primes[i]*i
			if (i % primes[j] == 0)break;//若primes[i]是合数i的最小素因子结束本轮遍历。防止重复标记。
		}
	}
    double e = clock();//检测时间结束位置。
	printf("%.01fms", e-s);//输出时间段。
    
    for (int i = 0; i < k; i++)cout << primes[i] << " ";
    
    return 0;
}

double s=clock();

double e=clock();printf("%.01fms",e-s)//可以用这个函数比较和其他方法的筛选时间。(clock在头文件ctime中)。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值