预测的性能的评价标准

1.决定系数( R2)

定义

      R2决定系数是对线性模型评估的一种评价指标,其值最大为1,最小为0,当值越接近于1,则说明模型越好;值越接近于0,则模型越差。

计算过程
使用yi表示真实的观测值,使用y_hat表示真实观测值的平均值,使用yi_表示预测值,于是就产生下以下的指标:

回归平方和(SSR)
 SSR= \sum_{i=1}^{n}(yi_-y_hat)^{2}
估计值与平均值的误差,反映自变量与因变量之间的相关程度的偏差平方和

残差平方和(SSE)
SSE=\sum_{i=1}^{n}(yi-yi_)^{2} 
即估计值与真实值的误差,反映模型拟合程度

总离差平方和(SST)
SST=SSR+SSE=\sum (yi-y hat)^{2}

即平均值和真实值之间的误差,反映与数学期望的偏离程度

R2 score ,即决定系数
反映因变量的全部变异能通过回归关系被变量解释的比例,计算公式:
R^{^{2}}=1-\frac{SSE}{SST}
 


 
进一步化简为:

如此一来,分子就变成了常用的评价指标,均方误差MSE,分母则变成了方差,对于

       可以通俗的理解为使用均值作为误差基准,看预测误差是否大于或者小于均值基准误差
若:
       R2 score = 1,样本中预测值和真实值完全相等,没有任何误差,表示回归分析中自变量对因变量的解释越好
       R2 score = 0,此时分子等于分母,样本的每项预测值都等于均值
 

2.一致相关系数( CCC )

链接:【临智说一说】第四节 一致性与相关性的区别及其评价指标 (qq.com)

3.均方根误差( RMSE )

4.平均误差( ME )

5.预测区间覆盖概率( PICP )(评估不确定性估计)

链接:深度神经网络的不确定性(下)_深度网络模型检测不确定性-CSDN博客

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值