1.决定系数( R2)
定义
R2决定系数是对线性模型评估的一种评价指标,其值最大为1,最小为0,当值越接近于1,则说明模型越好;值越接近于0,则模型越差。
计算过程
使用yi表示真实的观测值,使用y_hat表示真实观测值的平均值,使用yi_表示预测值,于是就产生下以下的指标:
回归平方和(SSR)
估计值与平均值的误差,反映自变量与因变量之间的相关程度的偏差平方和
残差平方和(SSE)
即估计值与真实值的误差,反映模型拟合程度
总离差平方和(SST)
即平均值和真实值之间的误差,反映与数学期望的偏离程度
R2 score ,即决定系数
反映因变量的全部变异能通过回归关系被变量解释的比例,计算公式:
即
进一步化简为:
如此一来,分子就变成了常用的评价指标,均方误差MSE,分母则变成了方差,对于
可以通俗的理解为使用均值作为误差基准,看预测误差是否大于或者小于均值基准误差
若:
R2 score = 1,样本中预测值和真实值完全相等,没有任何误差,表示回归分析中自变量对因变量的解释越好
R2 score = 0,此时分子等于分母,样本的每项预测值都等于均值
2.一致相关系数( CCC )
链接:【临智说一说】第四节 一致性与相关性的区别及其评价指标 (qq.com)
3.均方根误差( RMSE )
4.平均误差( ME )
5.预测区间覆盖概率( PICP )(评估不确定性估计)