算法模型超参数调优方法

机器学习模型超参数调优方法: 交叉验证网格搜索 & 交叉验证随机搜索

一、交叉验证

1.概述

交叉验证(Cross-Validation)是一种评估机器学习模型性能的方法,可以更准确地估计模型的泛化能力(在未见过的数据上的表现)。

2.步骤

传统的交叉验证流程如下:

  1. 将数据集分为训练集和测试集。通常,大部分数据用于训练模型,剩余的部分用于测试模型。
  2. 将训练集进一步划分为 K 个折(folds),通常是等大小的子集。
  3. 对于每个折,选择其中一个作为验证集(validation set),其余折作为训练集。
  4. 使用训练集来训练模型,并使用验证集来评估模型性能。
  5. 重复步骤 3 和 4,直到每个折都被用作验证集。
  6. 对 K 个验证集上的性能进行评估,通常取平均值作为最终模型性能的评估指标。

3.分类

交叉验证的优点是可以更充分地利用数据,并提供对模型性能的更稳健的估计。常见的交叉验证方法包括 K 折交叉验证(K-Fold Cross-Validation)和留一交叉验证(Leave-One-Out Cross-Validation)。

4. 示例

在 Python 中,可以使用 Scikit-learn(sklearn)库来实现交叉验证。以下是一个使用 K 折交叉验证评估模型性能的示例:

from sklearn.model_selection import cross_val_score
from sklearn.model_selection import KFold
from sklearn.linear_model import LogisticRegression

# 创建模型对象
model = LogisticRegression()
评论 1
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值