机器学习模型超参数调优方法: 交叉验证网格搜索 & 交叉验证随机搜索
一、交叉验证
1.概述
交叉验证(Cross-Validation)是一种评估机器学习模型性能的方法,可以更准确地估计模型的泛化能力(在未见过的数据上的表现)。
2.步骤
传统的交叉验证流程如下:
- 将数据集分为训练集和测试集。通常,大部分数据用于训练模型,剩余的部分用于测试模型。
- 将训练集进一步划分为 K 个折(folds),通常是等大小的子集。
- 对于每个折,选择其中一个作为验证集(validation set),其余折作为训练集。
- 使用训练集来训练模型,并使用验证集来评估模型性能。
- 重复步骤 3 和 4,直到每个折都被用作验证集。
- 对 K 个验证集上的性能进行评估,通常取平均值作为最终模型性能的评估指标。
3.分类
交叉验证的优点是可以更充分地利用数据,并提供对模型性能的更稳健的估计。常见的交叉验证方法包括 K 折交叉验证(K-Fold Cross-Validation)和留一交叉验证(Leave-One-Out Cross-Validation)。
4. 示例
在 Python 中,可以使用 Scikit-learn(sklearn)库来实现交叉验证。以下是一个使用 K 折交叉验证评估模型性能的示例:
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import KFold
from sklearn.linear_model import LogisticRegression
# 创建模型对象
model = LogisticRegression()

最低0.47元/天 解锁文章
2242





