自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(34)
  • 收藏
  • 关注

原创 YOLO V1 V2算法总结

YOLO v1通过将目标检测问题转化为回归问题,实现了实时的目标检测速度。它通过一个单一的卷积神经网络一次性预测多个边界框和类别概率,大大简化了检测过程,适用于需要高效实时检测的场景。尽管YOLO v1在定位精度上稍逊色于一些多阶段检测器,但它的速度和简洁性使其成为许多实际应用中的首选。YOLO v2 通过网络结构优化、批量归一化、锚点机制、直接位置预测和多尺度训练等方法,在保持实时检测速度的同时显著提升了检测精度和鲁棒性。上述改进使得 YOLO v2 在实际应用中更加高效和实用。

2024-07-30 16:32:30 657

原创 使用 softmax 函数进行归一化原因

σziezi∑j1nezjσzi​∑j1n​ezj​ezi​​其中 ( z ) 是输入向量,( z_i ) 是向量中的第 ( i ) 个元素,( n ) 是向量的长度。Softmax 函数的梯度特性使其在神经网络训练中表现出色。它提供了平滑且数值稳定的梯度,使得优化过程更加高效和可靠。这些特性结合起来,使 softmax 成为分类问题中非常受欢迎的选择。

2024-07-18 17:24:32 1049

原创 线性相位IIR滤波器

【代码】线性相位IIR滤波器。

2024-07-16 16:49:16 146

原创 主成分分析

主成分分析(Principal Component Analysis,简称PCA)是一种常用的数据降维技术。它主要用于将高维数据映射到低维空间,同时尽可能保留原始数据中的重要信息。PCA 的基本思想是通过正交变换,把由线性相关的变量表示的观测数据转换为少数几个由线性无关变量表示的数据。线性变换将数据投影到新的坐标系中,这个新的坐标系的轴(即主成分)是原始数据中方差最大的方向。下面我会详细解释 PCA 的核心概念和步骤。

2024-07-07 12:01:20 608

原创 SVM的代码实现

max⁡α∑i1nαi−12∑i1n∑j1nαiαjyiyjKxixjαmax​i1∑n​αi​−21​i1∑n​j1∑n​αi​αj​yi​yj​Kxi​xj​train_svm函数实现了一个简化的支持向量机训练过程。初始化alpha为零。在最大迭代次数内,遍历所有样本,计算梯度并更新alpha。每次更新alpha。

2024-07-04 23:13:55 885

原创 深入理解SVM核函数的概念

SVM试图在数据的不同类别之间找到一个最优的分离超平面,使得两类之间的间隔最大化。对于线性可分的数据,这个超平面就是线性的。Kxixjϕxi⋅ϕxjKxi​xj​ϕxi​⋅ϕxj​线性核Kxixjxi⋅xjKxi​xj​xi​⋅xj​多项式核Kxixjxi⋅xjcdKxi​xj​xi​⋅xj​cd高斯径向基函数(RBF)核Kxixjexp。

2024-07-04 22:55:16 903

原创 IIR滤波器的结构比较(Direct I and Direct II Form)

存储需求直接 I 型结构需要更多的存储,因为它需要存储输入和输出的延迟项。直接 II 型结构需要较少的存储,因为它只需要存储中间变量的延迟项。数值稳定性直接 II 型结构通常比直接 I 型结构具有更好的数值稳定性,特别是对于高阶滤波器。这是因为直接 II 型结构在计算过程中减少了中间变量的累积误差。实现复杂度直接 I 型结构实现较为简单,直接根据传递函数进行计算。直接 II 型结构实现稍微复杂,需要将滤波器分解为两个部分来计算。

2024-06-10 15:51:15 1667

原创 频谱 搬移

信号与一个频率固定的余弦信号相乘在频域上相当于对信号的频谱进行移动处理,这是频谱分析中一个经典的结果。这个现象可以通过傅里叶变换和调制定理来解释。

2024-06-07 11:30:43 712

原创 关于FIR滤波器的一些细节问题

yn∑k0N−1hkxn−kynk0∑N−1​hkxn−k其中,( h[k] ) 是滤波器的系数,( x[n] ) 是输入信号,( y[n] ) 是输出信号。通带增益是指在滤波器的通带内(通常是低频部分)输入信号的增益。对于理想的低通滤波器,通带增益应尽量接近1,表示信号在通带内没有被放大或衰减。综上所述,低通FIR滤波器的通带增益等于其滤波系数之和,因为在零频率(即直流成分)下,频率响应等于系数的和,而通带增益应尽量接近零频率的增益。

2024-06-07 11:22:53 1156

原创 【关于傅里叶变换的一系列问题】

介绍了一些关于傅里叶变换的细节知识

2024-06-06 16:03:03 916

原创 滤波器群延时的概念

群延迟是相位响应的负导数。对于线性相位滤波器,相位响应是频率的线性函数,因此其导数是常数,表明群延迟是恒定的。

2024-05-31 12:24:34 3213

原创 TF-IDF解释

假设我们有以下三段简短的文本数据:文本1: 这个苹果很新鲜很甜文本2: 我买了一个苹果非常喜欢文本3: 这个苹果皮非常光滑首先,我们构建这个小文本集合的词典(vocabulary),去掉一些常见的无意义词语(如"的"、"一个"等),词典为:{‘这个’, ‘苹果’, ‘新鲜’, ‘甜’, ‘我’, ‘买了’, ‘非常’, ‘喜欢’, ‘皮’, ‘光滑’}共10个词条。接下来,计算每个词条在每个文本中的TF(词频)值,以及在整个文本集合中的IDF(逆向文档频率)值。

2024-05-08 22:39:56 633

原创 稀疏数据在机器学习任务中的应用问题

在机器学习任务中,稀疏数据是指在大量数据中,只有少部分数据是有效或非零的情况。在稀疏数据集中,有大量的0值或者缺失值。例如,在自然语言处理中,当我们使用"词袋"模型表示文本信息时,我们通常会创建一个巨大的字典,其中每个单词都对应一个特定的维度。每个文档都可以表示为一个向量,向量中的元素数量与字典中的单词数量相同。然而,在某个具体的文档中,只有少数单词会出现,所以对应的向量中大多数元素都会是0,这样的向量就是稀疏的。假设我们有3篇文本,并用词袋(Bag-of-words)模型进行表示。

2024-05-08 22:30:02 669

原创 麦克风性能参数

声压级的计算公式为:Lp=20log(p/p0),其中Lp是声压级,p是测量的声压,p0是参考声压。抗风压能力:对着麦克风吹气可能会造成一定的风压,为防止这种风压影响麦克风的正常工作,麦克风应该有良好的抗风压能力。耐受最高声压级性能:如果人力的吹气可能会产生很大的声压,因此麦克风应当能耐受并准确的响应产生的声压级。灵敏度:麦克风需要有足够的灵敏度来捕捉到人对着麦克风吹气的声音,这涉及到麦克风对声压级的反应能力。动态范围:吹气声音的强弱可能会变化,因此麦克风应有足够宽的动态范围,以适应声音强度的变化。

2024-04-17 16:59:28 691

原创 机器学习工作流

本文的目的是演示如何构建一个相对完整的机器学习工作流。

2024-04-07 21:59:46 339

原创 深度学习调参指南

tuning_playbook_zh_cn/深度学习调参指南中文版.pdf at main · schrodingercatss/tuning_playbook_zh_cn · GitHub

2024-03-26 11:37:16 527

原创 在jupyter notebook中实现动态绘制学习曲线

【代码】在jupyter notebook中实现动态绘制学习曲线。

2024-03-14 17:41:23 222

原创 医工融合期刊及论文汇总

1.Practical intelligent diagnostic algorithm for wearable 12-lead ECG via self-supervised learning on large-scale dataset2.Soli‑enabled noncontact heart rate detection for sleep and meditation tracking3.Algoritmically improved microwave radar monitors brea

2023-12-24 15:35:02 474

原创 Jupyter Notebook修改默认工作目录

2.在上述博客内容的基础上,这里不是删除【%USERPROFILE%】而是把这个地方替换为所要设置的工作目录路径,3.【起始位置】也可以更改为所要设置的工作目录路径(不一定需要这一步)

2023-12-21 15:41:49 1033

原创 神经网络训练技巧

1. 逐渐增加训练数据规模,比如先在小数据集上训练,之后再增大数据集继续训练。

2023-11-23 16:55:09 125

原创 MATLAB读取每行文本并提取字符串后的数字

【代码】MATLAB读取每行文本并提取字符串后的数字。

2023-11-20 21:49:49 1776 2

原创 信号相干解调

举一个例子,假设原始信号为m(t),载波信号为c(t) = cos(2 * pi * fc * t),其中fc为载波频率。调制信号进行低通滤波后可以获得原始信号,这是因为在相干解调过程中,接收信号与本地参考信号进行混频后的信号包含原始信号、高频载波信号以及可能的高频噪声。我们可以看到,混频信号包含了原始信号m(t)与高频成分(与4 * fc的频率项)的乘积。这就实现了将调制信号还原为原始信号。相干解调技术是一种有效的信号处理方法,它需要将接收信号与本地参考信号相乘,然后通过低通滤波器以获取原始调制信号。

2023-11-09 11:12:04 660 1

转载 岭回归(2范数),套索回归,弹性网络

https://www.cnblogs.com/Belter/p/8536939.html

2019-11-12 15:26:10 442

原创 拉格朗日对偶性

1.原始问题假设,,是定义在上的连续可微函数,约束最优化问题(原始问题)如下: 引进广义拉格朗日函数:,是拉格朗日乘子。关于的函数: 所以: 原始问题就是广义拉格朗日的极小极大问题(与原问题等价),是关于变量的函数。定义原始问题的最优值:2.对偶问题定义:...

2019-07-02 12:56:27 284

原创 梯度

“梯度”是一个向量,是梯度向量的简称关于什么是梯度参见:https://baijiahao.baidu.com/s?id=1627719346341492607&wfr=spider&for=pc梯度的两条结论:(1)梯度的方向是函数变化率最大的方向(2)梯度指向函数值增大的方向解释:对于函数, 在方向上的方向导数为:对于函数沿着方向变化的值为:...

2019-07-02 10:35:35 339

原创 拉格朗日乘子法和KKT 条件解析

1.最优化问题拉格朗日乘子法和KKT条件是求解最优化问题的重要方法,因此,在正式讲解二者之前,要先谈一谈最优化问题。通常,需要求解的最优化问题分为3类:1.1. 无约束优化问题: 对于此类问题,可以通过求取优化函数的导数,使其为0即可。1.2. 等式约束优化问题: 对于此类问题,通常利用拉格朗日乘子法,首先基于...

2019-07-01 09:44:51 1737

转载 Hyperopt 超参数调优

本文是对Parameter Tuning with Hyperopt一文的翻译。译者在设计深度学习模型的网络结构发现了hyperopt这个大杀器,相比每次手动各种试,用工具批量调节网络中的各种超参数确实能省心不少。不过hyperopt的官方文档描述的太渣,google 了一翻,发现这篇博客算是介绍的比较清楚的一个,便顺手翻译了,译文已取得原作者授权。正文开始本文将介绍一种快速有效的方法用于...

2019-06-08 20:32:30 2505 1

原创 Softmax

在数学领域中,Softmax函数,或称归一化指数函数,对向量进行归一化,凸显其中最大的值并抑制远低于最大值的其他分量。它能将一个含任意实数的K维向量压缩”到另一个K维实向量中,使得每一个元素的范围都在 [0,1]之间,并且所有元素的和为1 某个样本...

2019-03-13 21:58:45 245

原创 概率与统计

1.概率和统计是一个东西吗?概率(probabilty)和统计(statistics)看似两个相近的概念,其实研究的问题刚好相反。概率研究的问题是,已知一个模型和参数,怎么去预测这个模型产生的结果的特性(例如均值,方差,协方差等等)。 举个例子,我想研究怎么养猪(模型是猪),我选好了想养的品种、喂养方式、猪棚的设计等等(选择参数),我想知道我养出来的猪大概能有多肥,肉质怎么样(预测结果)。...

2019-02-22 12:22:45 1999

原创 决策树

一、前言1.决策树学习存在三个过程:特征选择,决策树生成,决策树剪枝。2.决策树的节点有两种类型:内部节点和叶节点,内部节点表示一个特征,叶子节点代表一个类别。二、决策树学习1.特征选择特征选择就是要优先选取对于训练数据具有良好分类能力的特征进行特征空间的划分,其准则就是信息增益或信息增益比。根据信息增益准则的特征选择方法是:对训练数据集或数据子集D,计算每个特征的信息增益...

2019-02-20 15:11:10 1722

原创 常用的核函数

在机器学习建模过程中,核函数的选择通常和应用场景有关,有专用核函数,但实际上,还是有一些通用核函数,本文重点介绍一些通用核函数,理解核函数,有助于在实战过程中选择合理的调参范围,指导我们对超参数的调整。常用的核函数有两种,一种是多项式核函数,另外一种是高斯核函数。1.多项式核函数数学表达式为:            , 其中为正数,非负,相对于线性和函数可以表达更复杂,非直线的分隔...

2018-09-21 10:51:43 11125

原创 支持向量机

 1.线性可分支持向量机与硬间隔最大化线性支持向量机是一个二分类模型,实际上是想求一个分离超平面:                                                                                                                                     (1)也就是求解公式...

2018-09-20 13:10:55 2760

原创 卡方分布Chi-squared Distribution

分布通过检验统计量来比较期望结果和实际结果之间的差别,然后得出观察结果发生的概率。其中O代表观察值,E代表期望值。这个检验统计量提供了一种期望值与观察值之间差异的度量办法。最后反映在数值的大小上。那么,当大到什么程度,差异才算显著呢?这要根据自由度,设定的显著性水平查找分布表来判定。对于卡方分布的具体使用,我认为其有三要素:一个公式,一张分布表,一张概率密度图。下左图中n代表自由度,纵轴为概率...

2018-09-05 19:18:47 48589

原创 统计学习方法之基本概念

1.变量的表示     在监督学习过程中,将输入与输出看做是定义在输入空间与输出空间上的随机变量的取值,输入、输出变量用大写字母表示,习惯上输入用X,输出用Y表示。输入与输出变量所取得值用小写字母表示。输入变量的取值为,输出变量的取值为。一般情况下,向量均用列向量表示,如输入实例x的特征向量记作:                                               ...

2018-08-29 17:34:19 269

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除