Wang CS
码龄7年
关注
提问 私信
  • 博客:97,699
    97,699
    总访问量
  • 33
    原创
  • 30,995
    排名
  • 209
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:上海市
  • 加入CSDN时间: 2017-11-13
博客简介:

小王的博客

查看详细资料
  • 原力等级
    当前等级
    3
    当前总分
    243
    当月
    9
个人成就
  • 获得243次点赞
  • 内容获得4次评论
  • 获得391次收藏
  • 代码片获得422次分享
创作历程
  • 1篇
    2025年
  • 17篇
    2024年
  • 5篇
    2023年
  • 8篇
    2019年
  • 4篇
    2018年
成就勋章
TA的专栏
  • 深度学习
  • 机器学习
    2篇
兴趣领域 设置
  • 人工智能
    数据分析
创作活动更多

2024 博客之星年度评选报名已开启

博主的专属年度盛宴,一年仅有一次!MAC mini、大疆无人机、华为手表等精美奖品等你来拿!

去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

大模型原理解释

在微调大语言模型时,模型的输入输出流程是核心部分。以下是具体的输入输出流程,包括数据如何进入模型、模型如何处理数据以及如何生成输出。以下是对大语言模型网络结构的详细解释,并举例说明每一层的输入和输出。,模型为 GPT-2,嵌入维度为 768,词汇表大小为 50257。大语言模型(如 GPT、BERT 等)的核心网络结构是基于。通过这种结构,大语言模型能够捕捉上下文信息并生成连贯的文本。Transformer 由多个组件组成,包括。
原创
发布博客 2025.01.06 ·
646 阅读 ·
11 点赞 ·
0 评论 ·
14 收藏

YOLO V1 V2算法总结

YOLO v1通过将目标检测问题转化为回归问题,实现了实时的目标检测速度。它通过一个单一的卷积神经网络一次性预测多个边界框和类别概率,大大简化了检测过程,适用于需要高效实时检测的场景。尽管YOLO v1在定位精度上稍逊色于一些多阶段检测器,但它的速度和简洁性使其成为许多实际应用中的首选。YOLO v2 通过网络结构优化、批量归一化、锚点机制、直接位置预测和多尺度训练等方法,在保持实时检测速度的同时显著提升了检测精度和鲁棒性。上述改进使得 YOLO v2 在实际应用中更加高效和实用。
原创
发布博客 2024.07.30 ·
691 阅读 ·
18 点赞 ·
0 评论 ·
7 收藏

使用 softmax 函数进行归一化原因

σziezi∑j1nezjσzi​∑j1n​ezj​ezi​​其中 ( z ) 是输入向量,( z_i ) 是向量中的第 ( i ) 个元素,( n ) 是向量的长度。Softmax 函数的梯度特性使其在神经网络训练中表现出色。它提供了平滑且数值稳定的梯度,使得优化过程更加高效和可靠。这些特性结合起来,使 softmax 成为分类问题中非常受欢迎的选择。
原创
发布博客 2024.07.18 ·
1346 阅读 ·
6 点赞 ·
0 评论 ·
12 收藏

线性相位IIR滤波器

【代码】线性相位IIR滤波器。
原创
发布博客 2024.07.16 ·
171 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

主成分分析

主成分分析(Principal Component Analysis,简称PCA)是一种常用的数据降维技术。它主要用于将高维数据映射到低维空间,同时尽可能保留原始数据中的重要信息。PCA 的基本思想是通过正交变换,把由线性相关的变量表示的观测数据转换为少数几个由线性无关变量表示的数据。线性变换将数据投影到新的坐标系中,这个新的坐标系的轴(即主成分)是原始数据中方差最大的方向。下面我会详细解释 PCA 的核心概念和步骤。
原创
发布博客 2024.07.07 ·
630 阅读 ·
11 点赞 ·
0 评论 ·
29 收藏

SVM的代码实现

max⁡α∑i1nαi−12∑i1n∑j1nαiαjyiyjKxixjαmax​i1∑n​αi​−21​i1∑n​j1∑n​αi​αj​yi​yj​Kxi​xj​train_svm函数实现了一个简化的支持向量机训练过程。初始化alpha为零。在最大迭代次数内,遍历所有样本,计算梯度并更新alpha。每次更新alpha。
原创
发布博客 2024.07.04 ·
1031 阅读 ·
19 点赞 ·
0 评论 ·
15 收藏

深入理解SVM核函数的概念

SVM试图在数据的不同类别之间找到一个最优的分离超平面,使得两类之间的间隔最大化。对于线性可分的数据,这个超平面就是线性的。Kxixjϕxi⋅ϕxjKxi​xj​ϕxi​⋅ϕxj​线性核Kxixjxi⋅xjKxi​xj​xi​⋅xj​多项式核Kxixjxi⋅xjcdKxi​xj​xi​⋅xj​cd高斯径向基函数(RBF)核Kxixjexp。
原创
发布博客 2024.07.04 ·
947 阅读 ·
9 点赞 ·
0 评论 ·
24 收藏

IIR滤波器的结构比较(Direct I and Direct II Form)

存储需求直接 I 型结构需要更多的存储,因为它需要存储输入和输出的延迟项。直接 II 型结构需要较少的存储,因为它只需要存储中间变量的延迟项。数值稳定性直接 II 型结构通常比直接 I 型结构具有更好的数值稳定性,特别是对于高阶滤波器。这是因为直接 II 型结构在计算过程中减少了中间变量的累积误差。实现复杂度直接 I 型结构实现较为简单,直接根据传递函数进行计算。直接 II 型结构实现稍微复杂,需要将滤波器分解为两个部分来计算。
原创
发布博客 2024.06.10 ·
2360 阅读 ·
15 点赞 ·
0 评论 ·
29 收藏

频谱 搬移

信号与一个频率固定的余弦信号相乘在频域上相当于对信号的频谱进行移动处理,这是频谱分析中一个经典的结果。这个现象可以通过傅里叶变换和调制定理来解释。
原创
发布博客 2024.06.07 ·
1006 阅读 ·
24 点赞 ·
0 评论 ·
20 收藏

关于FIR滤波器的一些细节问题

yn∑k0N−1hkxn−kynk0∑N−1​hkxn−k其中,( h[k] ) 是滤波器的系数,( x[n] ) 是输入信号,( y[n] ) 是输出信号。通带增益是指在滤波器的通带内(通常是低频部分)输入信号的增益。对于理想的低通滤波器,通带增益应尽量接近1,表示信号在通带内没有被放大或衰减。综上所述,低通FIR滤波器的通带增益等于其滤波系数之和,因为在零频率(即直流成分)下,频率响应等于系数的和,而通带增益应尽量接近零频率的增益。
原创
发布博客 2024.06.07 ·
1726 阅读 ·
18 点赞 ·
0 评论 ·
27 收藏

【关于傅里叶变换的一系列问题】

介绍了一些关于傅里叶变换的细节知识
原创
发布博客 2024.06.06 ·
1123 阅读 ·
14 点赞 ·
0 评论 ·
24 收藏

滤波器群延时的概念

群延迟是相位响应的负导数。对于线性相位滤波器,相位响应是频率的线性函数,因此其导数是常数,表明群延迟是恒定的。
原创
发布博客 2024.05.31 ·
4252 阅读 ·
20 点赞 ·
0 评论 ·
39 收藏

TF-IDF解释

假设我们有以下三段简短的文本数据:文本1: 这个苹果很新鲜很甜文本2: 我买了一个苹果非常喜欢文本3: 这个苹果皮非常光滑首先,我们构建这个小文本集合的词典(vocabulary),去掉一些常见的无意义词语(如"的"、"一个"等),词典为:{‘这个’, ‘苹果’, ‘新鲜’, ‘甜’, ‘我’, ‘买了’, ‘非常’, ‘喜欢’, ‘皮’, ‘光滑’}共10个词条。接下来,计算每个词条在每个文本中的TF(词频)值,以及在整个文本集合中的IDF(逆向文档频率)值。
原创
发布博客 2024.05.08 ·
647 阅读 ·
18 点赞 ·
0 评论 ·
6 收藏

稀疏数据在机器学习任务中的应用问题

在机器学习任务中,稀疏数据是指在大量数据中,只有少部分数据是有效或非零的情况。在稀疏数据集中,有大量的0值或者缺失值。例如,在自然语言处理中,当我们使用"词袋"模型表示文本信息时,我们通常会创建一个巨大的字典,其中每个单词都对应一个特定的维度。每个文档都可以表示为一个向量,向量中的元素数量与字典中的单词数量相同。然而,在某个具体的文档中,只有少数单词会出现,所以对应的向量中大多数元素都会是0,这样的向量就是稀疏的。假设我们有3篇文本,并用词袋(Bag-of-words)模型进行表示。
原创
发布博客 2024.05.08 ·
762 阅读 ·
6 点赞 ·
0 评论 ·
13 收藏

麦克风性能参数

声压级的计算公式为:Lp=20log(p/p0),其中Lp是声压级,p是测量的声压,p0是参考声压。抗风压能力:对着麦克风吹气可能会造成一定的风压,为防止这种风压影响麦克风的正常工作,麦克风应该有良好的抗风压能力。耐受最高声压级性能:如果人力的吹气可能会产生很大的声压,因此麦克风应当能耐受并准确的响应产生的声压级。灵敏度:麦克风需要有足够的灵敏度来捕捉到人对着麦克风吹气的声音,这涉及到麦克风对声压级的反应能力。动态范围:吹气声音的强弱可能会变化,因此麦克风应有足够宽的动态范围,以适应声音强度的变化。
原创
发布博客 2024.04.17 ·
878 阅读 ·
9 点赞 ·
0 评论 ·
6 收藏

机器学习工作流

本文的目的是演示如何构建一个相对完整的机器学习工作流。
原创
发布博客 2024.04.07 ·
350 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

深度学习调参指南

tuning_playbook_zh_cn/深度学习调参指南中文版.pdf at main · schrodingercatss/tuning_playbook_zh_cn · GitHub
原创
发布博客 2024.03.26 ·
573 阅读 ·
3 点赞 ·
0 评论 ·
2 收藏

在jupyter notebook中实现动态绘制学习曲线

【代码】在jupyter notebook中实现动态绘制学习曲线。
原创
发布博客 2024.03.14 ·
267 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

医工融合期刊及论文汇总

1.Practical intelligent diagnostic algorithm for wearable 12-lead ECG via self-supervised learning on large-scale dataset2.Soli‑enabled noncontact heart rate detection for sleep and meditation tracking3.Algoritmically improved microwave radar monitors brea
原创
发布博客 2023.12.24 ·
537 阅读 ·
7 点赞 ·
0 评论 ·
10 收藏

Jupyter Notebook修改默认工作目录

2.在上述博客内容的基础上,这里不是删除【%USERPROFILE%】而是把这个地方替换为所要设置的工作目录路径,3.【起始位置】也可以更改为所要设置的工作目录路径(不一定需要这一步)
原创
发布博客 2023.12.21 ·
1048 阅读 ·
7 点赞 ·
0 评论 ·
8 收藏
加载更多