力扣 516. 最长回文子序列

动规最长回文子序列模板

状态设计

dp[i][j] : s[i~j]中最长的回文子序列的长度

状态转移

  • s[i] == s[j]

dp[i][j] = dp[i+1][j-1] + 2

两头相同 中间的最长的回文子序列+2(就是两头的)

  • s[i] != s[j]

dp[i][j] = max(dp[i+1][j], dp[i][j-1])

两头不同 先去掉头试试 再去掉尾试试

初始化

dp[i][i] = 1

递推顺序

小区间 -> 大区间

答案

dp[0][n-1](如果不知道为什么 那么再读一读本章 ⌈状态设计⌋ 再想想dp[0][n-1]是什么意思)

代码

/*
dp[i][j] : s[i~j]中最长的回文子序列的长度
转移
    s[i] == s[j]  dp[i][j] = dp[i+1][j-1] + 2
    s[i] != s[j]  dp[i][j] = max(dp[i+1][j], dp[i][j-1])
初始化
地推顺序
答案
*/
const int N = 1005;
int dp[N][N];

class Solution {
    public:
        int longestPalindromeSubseq(string s) {
            int n = s.size();
            if (n == 1)
                return 1;

            for (int i = 0; i < n; i ++)
                dp[i][i] = 1;

            for (int len = 2; len <= n; len ++) {
                for (int i = 0; i + len - 1 < n; i ++) {
                    int j = i + len - 1;
                    if (s[i] == s[j])
                        dp[i][j] = dp[i + 1][j - 1] + 2;
                    if (s[i] != s[j])
                        dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);
                }
            }

            return dp[0][n - 1];
        }
};

原题链接:516. 最长回文子序列 - 力扣(LeetCode)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值