L-7整数的持续性
从任一给定的正整数 n 出发,将其每一位数字相乘,记得到的乘积为 n1。以此类推,令 ni+1 为 ni 的各位数字的乘积,直到最后得到一个个位数 nm,则 m 就称为 n 的持续性。例如 679 的持续性就是 5,因为我们从 679 开始,得到 6×7×9=378,随后得到 3×7×8=168、1×6×8=48、4×8=32,最后得到 3×2=6,一共用了 5 步。
本题就请你编写程序,找出任一给定区间内持续性最长的整数。
输入格式:
输入在一行中给出两个正整数 a 和 b(1≤a≤b≤109 且 (b−a)<103),为给定区间的两个端点。
输出格式:
首先在第一行输出区间 [a,b] 内整数最长的持续性。随后在第二行中输出持续性最长的整数。如果这样的整数不唯一,则按照递增序输出,数字间以 1 个空格分隔,行首尾不得有多余空格。
输入样例:
500 700
输出样例:
5
679 688 697
思路:
由题意可知a与b相差范围在10^3以内,故可数组来记录每个数的连续性,记录完之后与最大连续性的值进行比较,相等则输出对应的数。根据题意进行模拟。
注意:开辟数组下标的含义和数组元素对应值的含义。
代码:
#include<iostream>
using namespace std;
typedef long long ll;
int main(){
ll a,b;
cin>>a>>b;
ll maxn=0;//记录最大连续性
ll p[1000]={0};//数组用于记录每个数字的连续性
int pos=0;
for(ll i=a;i<=b;i++){
ll cnt=0;//计算每个数字的连续性
ll tmp=i;
while(tmp>9){
ll f=1;
while(tmp>0){
f*=tmp%10;
tmp/=10;
}
tmp=f;
cnt++;
}
maxn=max(maxn,cnt);
p[pos]=cnt;
pos++;
}
cout<<maxn<<endl;
int t=0;//记录第一个元素,空格为n-1个,即第一个元素前不需要空格
for(ll i=0;i<=b-a;i++){
if(t==0){
if(p[i]==maxn){
cout<<i+a;//i+a即为对应的数
t=1;
}
}
else if(t!=0){
if(p[i]==maxn)
cout<<" "<<i+a;
}
}
}