2024天梯赛决赛题解

L-7整数的持续性

从任一给定的正整数 n 出发,将其每一位数字相乘,记得到的乘积为 n1​。以此类推,令 ni+1​ 为 ni​ 的各位数字的乘积,直到最后得到一个个位数 nm​,则 m 就称为 n 的持续性。例如 679 的持续性就是 5,因为我们从 679 开始,得到 6×7×9=378,随后得到 3×7×8=168、1×6×8=48、4×8=32,最后得到 3×2=6,一共用了 5 步。
本题就请你编写程序,找出任一给定区间内持续性最长的整数。

输入格式:

输入在一行中给出两个正整数 a 和 b(1≤a≤b≤109 且 (b−a)<103),为给定区间的两个端点。

输出格式:

首先在第一行输出区间 [a,b] 内整数最长的持续性。随后在第二行中输出持续性最长的整数。如果这样的整数不唯一,则按照递增序输出,数字间以 1 个空格分隔,行首尾不得有多余空格。

输入样例:

500 700

输出样例:

5
679 688 697

  思路:

由题意可知a与b相差范围在10^3以内,故可数组来记录每个数的连续性,记录完之后与最大连续性的值进行比较,相等则输出对应的数。根据题意进行模拟。

注意:开辟数组下标的含义和数组元素对应值的含义。

代码:
#include<iostream>
using namespace std;
typedef long long ll;
int main(){
    ll a,b;
    cin>>a>>b;
    ll maxn=0;//记录最大连续性
    ll p[1000]={0};//数组用于记录每个数字的连续性
    int pos=0;
    for(ll i=a;i<=b;i++){
        ll cnt=0;//计算每个数字的连续性
        ll tmp=i;
        while(tmp>9){
            ll f=1;
            while(tmp>0){
                f*=tmp%10;
                tmp/=10;
            }
            tmp=f;
            cnt++;
        }
        maxn=max(maxn,cnt);
        p[pos]=cnt;
        pos++;
    }
    cout<<maxn<<endl;
    int t=0;//记录第一个元素,空格为n-1个,即第一个元素前不需要空格
    for(ll i=0;i<=b-a;i++){
        if(t==0){
           if(p[i]==maxn){
               cout<<i+a;//i+a即为对应的数
               t=1;
           }
        }
        else if(t!=0){
            if(p[i]==maxn)
            cout<<" "<<i+a;
        }
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

drunk—iu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值