一维差分,二维差分

文章介绍了差分算法的概念,它是一维数组中简单但有效的思想,通过差分数组b[i]=a[i]-a[i-1]实现。差分和前缀和互为逆运算,可用于高效处理区间元素的增减操作。文章给出了一个实例,展示如何使用差分处理序列在给定区间内增加特定值的问题,并提供了相应的AC代码示例。
摘要由CSDN通过智能技术生成

        差分,光是听着高级,是一种简单算法思想

一维差分的定义:

      我们定义差分是这样定义的:

我们设定:a为存储数据的主要函数,b数组是辅助函数

b[0]=a[0];
b[1]=a[1]-a[0];
b[2]=a[2]-a[1];
b[3]=a[3]-a[2];
b[4]=a[4]-a[3];
b[5]=a[5]-a[4];
b[6]=a[6]-a[5];
......
b[i]=a[i]-a[i]-1;

聪明的同学就会发现:

        1.似乎如果将前六个式子加起来,好像就是a[6]-a[0],而a[0]是等于0的,(b[0]=0)所以也就是说,

                a[6]=b[1]+b[2]+b[2]+b[3]+b[4]+b[5]+b[6],

就推导出了,

                前缀和与差分互为逆运算             (这个逆就体现在,数组身份的互换,辅助数组变主要存储数组,主要存储数组变辅助数组)

       2. 在这里,我们还要记住一个事情:

                a数组永远是b数组的前缀和数组,对b数组进行修改,那么从修改的那个下标开始,往后的每一个元素都会被改变,

所以才会减少运行的时间,通过操作b数组,将a数组从某个下标开始,往后每一个元素都改变。

        3.假如我们要修改一段区间而不是从某个区间开始,所有呢?

                那么我们只需要再对那个区间的末尾元素+1进行操作,使从+1这个下标开始的所有元素再变回去,就可以了。

        我们对一个区间进行整体增加一个值,或者减去一个值,就可以写成以下:

    b[l] += c;     
	b[r + 1] -= c;

        然后,进行前缀和,输出a[i]变化以后的值:

    a[i]=a[i-1]+b[i];
	printf("%d ",a[i]);

题目练习: 差分

输入一个长度为n的整数序列。
接下来输入m个操作,每个操作包含三个整数l, r, c,表示将序列中[l, r]之间的每个数加上c。
请你输出进行完所有操作后的序列。

输入格式:
第一行包含两个整数n和m。
第二行包含n个整数,表示整数序列。
接下来m行,每行包含三个整数l,r,c,表示一个操作。
输出格式
共一行,包含n个整数,表示最终序列。
数据范围

1≤n,m≤100000,
1≤l≤r≤n,
−1000≤c≤1000,
−1000≤整数序列中元素的值≤1000

    1
    2
    3
    4

输入样例

6 3
1 2 2 1 2 1
1 3 1
3 5 1
1 6 1

    1
    2
    3
    4
    5

输出样例:

3 4 5 3 4 2

题目分析:

        1.首先进行初始化:

    for(int i = 1; i <= n; i++) {
		scanf("%d", &a[i]);
		b[i] = a[i] - a[i - 1];      //构建差分数组
	}

        2.获取输入的值:

    while(m--) {
		scanf("%d%d%d", &l, &r, &c);
		b[l] += c;     //表示将序列中[l, r]之间的每个数加上c
		b[r + 1] -= c;
	}

        3.进行输出:

	for(int i = 1; i <= n; i++) {
		a[i]=a[i-1]+b[i];
		printf("%d ",a[i]);
	}

ac代码:

#include <Stdio.h>
/*
	为什么说差分可以看作是 前缀和的逆运算?
	因为:b:辅助函数,a:主要存储初始的数组 
		他们之间辅助函数的初始化 : 
			前缀和: 
				公式:b[i] =b[i-1]+a[i];		记住:公式的两个位置上的a,b数组是不对应的 
			差分 :
				公式: b[i]=a[i]-a[i-1];
			 
*/
int a[10010],b[10010];
int main() {
	int n,m;
	scanf("%d%d", &n, &m);
	for(int i = 1; i <= n; i++) {
		scanf("%d", &a[i]);
		b[i] = a[i] - a[i - 1];      //构建差分数组
	}
	int l, r, c;
	while(m--) {
		scanf("%d%d%d", &l, &r, &c);
		b[l] += c;     //表示将序列中[l, r]之间的每个数加上c
		b[r + 1] -= c;
	}
	for(int i = 1; i <= n; i++) {
		a[i]=a[i-1]+b[i];
		printf("%d ",a[i]);
	}
	return 0;
}

二维差分先鸽了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值