差分,光是听着高级,是一种简单算法思想
一维差分的定义:
我们定义差分是这样定义的:
我们设定:a为存储数据的主要函数,b数组是辅助函数
b[0]=a[0];
b[1]=a[1]-a[0];
b[2]=a[2]-a[1];
b[3]=a[3]-a[2];
b[4]=a[4]-a[3];
b[5]=a[5]-a[4];
b[6]=a[6]-a[5];
......
b[i]=a[i]-a[i]-1;
聪明的同学就会发现:
1.似乎如果将前六个式子加起来,好像就是a[6]-a[0],而a[0]是等于0的,(b[0]=0)所以也就是说,
a[6]=b[1]+b[2]+b[2]+b[3]+b[4]+b[5]+b[6],
就推导出了,
前缀和与差分互为逆运算 (这个逆就体现在,数组身份的互换,辅助数组变主要存储数组,主要存储数组变辅助数组)
2. 在这里,我们还要记住一个事情:
a数组永远是b数组的前缀和数组,对b数组进行修改,那么从修改的那个下标开始,往后的每一个元素都会被改变,
所以才会减少运行的时间,通过操作b数组,将a数组从某个下标开始,往后每一个元素都改变。
3.假如我们要修改一段区间而不是从某个区间开始,所有呢?
那么我们只需要再对那个区间的末尾元素+1进行操作,使从+1这个下标开始的所有元素再变回去,就可以了。
我们对一个区间进行整体增加一个值,或者减去一个值,就可以写成以下:
b[l] += c;
b[r + 1] -= c;
然后,进行前缀和,输出a[i]变化以后的值:
a[i]=a[i-1]+b[i];
printf("%d ",a[i]);
题目练习: 差分
输入一个长度为n的整数序列。
接下来输入m个操作,每个操作包含三个整数l, r, c,表示将序列中[l, r]之间的每个数加上c。
请你输出进行完所有操作后的序列。
输入格式:
第一行包含两个整数n和m。
第二行包含n个整数,表示整数序列。
接下来m行,每行包含三个整数l,r,c,表示一个操作。
输出格式
共一行,包含n个整数,表示最终序列。
数据范围
1≤n,m≤100000,
1≤l≤r≤n,
−1000≤c≤1000,
−1000≤整数序列中元素的值≤1000
1
2
3
4
输入样例:
6 3
1 2 2 1 2 1
1 3 1
3 5 1
1 6 1
1
2
3
4
5
输出样例:
3 4 5 3 4 2
题目分析:
1.首先进行初始化:
for(int i = 1; i <= n; i++) {
scanf("%d", &a[i]);
b[i] = a[i] - a[i - 1]; //构建差分数组
}
2.获取输入的值:
while(m--) {
scanf("%d%d%d", &l, &r, &c);
b[l] += c; //表示将序列中[l, r]之间的每个数加上c
b[r + 1] -= c;
}
3.进行输出:
for(int i = 1; i <= n; i++) {
a[i]=a[i-1]+b[i];
printf("%d ",a[i]);
}
ac代码:
#include <Stdio.h>
/*
为什么说差分可以看作是 前缀和的逆运算?
因为:b:辅助函数,a:主要存储初始的数组
他们之间辅助函数的初始化 :
前缀和:
公式:b[i] =b[i-1]+a[i]; 记住:公式的两个位置上的a,b数组是不对应的
差分 :
公式: b[i]=a[i]-a[i-1];
*/
int a[10010],b[10010];
int main() {
int n,m;
scanf("%d%d", &n, &m);
for(int i = 1; i <= n; i++) {
scanf("%d", &a[i]);
b[i] = a[i] - a[i - 1]; //构建差分数组
}
int l, r, c;
while(m--) {
scanf("%d%d%d", &l, &r, &c);
b[l] += c; //表示将序列中[l, r]之间的每个数加上c
b[r + 1] -= c;
}
for(int i = 1; i <= n; i++) {
a[i]=a[i-1]+b[i];
printf("%d ",a[i]);
}
return 0;
}
二维差分先鸽了