0搬砖 - 蓝桥云课 (lanqiao.cn)
问题描述
这天,小明在搬砖
他一共有n块砖他发现第砖的重量为w价值为i。他突然想从这些砖中选一些出来从下到上堆成一座塔,并且对于塔中的每一块砖来说,它上面所有砖的重量和不能超过它自身的价值。
他想知道这样堆成的塔的总价值(即塔中所有砖块的价值和)最大是多少。
输入格式
输入共n+1行第一行为一个正整数n,表示砖块的数量。后面n行每行两个正整数w,v分别表示每块砖的重量和价值。
输出格式
整数表示答案
python只能通过20%
# //想要堆成更高的塔,应该贪心地将重量较小的砖块放在上面,价值较大的砖块放在下面
# //这样先选择的重量较小的砖,会给后面的堆砌留下更大空间,后选择的价值较大的砖,也更容易堆进塔中
# //对两块砖a(wa,va),b(wb,vb),如果 wa <= & va <= b,无疑a应该放在上面,b应该放在下面
# // 如果重量和价值一大一小,此时有两种情况: wa< wb && va >vb ,或 wa > wb && va< vb
# //假设二者依然有序,b可以放在a下面,但a不可以放在b下面,则有wa <= vb && wb > va,
# // 若wa< wb,联立得wa <= vb< va< wb; 若wa > wb,联立得 vb >= wa > wb > va。
# // 上一行两式均满足va< wb,wa < vb,相加得 va + wa< vb + wb,满足此式时应将b排到后面。
# n 的最大值被限制为小于 1000。
# w 的最大值被限制为小于 20。
# v 的最大值被限制为小于 20000。
n=int(input())
p=[]
for _ in range(n):
w,v=map(int,input().split())
p.append({'w':w,'v':v})
p.sort(key=lambda x: x['w']+x['v'])
dp=[[0]*(n*20+1) for _ in range(n+1)]
for i in range(1,n+1):
for j in range(n*20+1):
dp[i][j]=dp[i-1][j] #表示在考虑前 i 个物品时,背包容量为 j 时的最优解等于不选择当前物品(即第 i 个物品),而是继续使用前 i-1 个物品时的最优解
for j in range(p[i-1]['v'],-1,-1): #,从 p[i-1]['v'] 到 0。其中 p[i-1]['v'] 表示第 i 个物品的价值,p[i-1]['w'] 表示第 i 个物品的重量
dp[i][j+p[i-1]['w']]=max(dp[i][j+p[i-1]['w']],dp[i-1][j]+p[i-1]['v']) #j+p[i-1]['w']表示将第 i-1 个物品放入背包后,背包容量增加了 p[i-1]['w'],所能达到的最优解
ans=max(dp[n])
print(ans)