任何振动都不可避免地会受到阻力的作用,这时的振动叫做阻尼振动。一般而言,如果物体所受阻力
F
f
F_f
Ff与其速度
v
v
v成正比,也即有:
F
f
=
−
γ
v
=
−
γ
d
x
d
t
(1)
F_f=-\gamma v=-\gamma\cfrac{\mathrm dx}{\mathrm dt}\tag{1}
Ff=−γv=−γdtdx(1)
γ
\gamma
γ是阻力系数。那么,在弹力、阻力的共同作用下,弹簧振子的运动方程就是:
m
d
2
x
d
t
2
=
−
k
x
−
γ
d
x
d
t
(2)
m\cfrac{\mathrm d^2x}{\mathrm dt^2}=-kx-\gamma\cfrac{\mathrm dx}{\mathrm dt}\tag{2}
mdt2d2x=−kx−γdtdx(2)
记
ω
0
=
k
m
,
β
=
γ
2
m
\omega_0=\sqrt{\cfrac{k}{m}},\beta=\cfrac{\gamma}{2m}
ω0=mk,β=2mγ.则式
(
2
)
(2)
(2)可化为:
d
2
x
d
t
2
+
2
β
d
x
d
t
+
ω
0
2
x
=
0
(3)
\cfrac{\mathrm d^2x}{\mathrm dt^2}+2\beta\cfrac{\mathrm dx}{\mathrm dt}+\omega_0^2x=0\tag{3}
dt2d2x+2βdtdx+ω02x=0(3)
这个微分方程的特征方程是
λ
2
+
2
β
λ
+
ω
0
2
=
0
(4)
\lambda^2+2\beta\lambda+\omega_0^2=0\tag{4}
λ2+2βλ+ω02=0(4)
是一个一元二次方程。根据判别式 Δ = 4 ( β 2 − ω 0 2 ) \Delta=4(\beta^2-\omega_0^2) Δ=4(β2−ω02)的不同,微分方程 ( 3 ) (3) (3)有三种形式的解。
弱阻尼 ( β < ω 0 ) (\beta < \omega _0) (β<ω0)
这种情况下,
Δ
<
0
\Delta < 0
Δ<0,记
ω
=
ω
0
2
−
β
2
\omega=\sqrt{\omega _0^2-\beta^2}
ω=ω02−β2,式
(
4
)
(4)
(4)有共轭复根
λ
1
,
2
=
−
β
±
ω
i
(5)
\lambda _{1,2}=-\beta\pm\omega \mathrm{i}\tag{5}
λ1,2=−β±ωi(5)
从而得到
(
3
)
(3)
(3)的解为
x
=
e
−
β
t
(
C
1
cos
ω
t
+
C
2
sin
ω
t
)
x=\mathrm{e}^{-\beta t}(C _1\cos\omega t+C _2\sin\omega t)
x=e−βt(C1cosωt+C2sinωt).这一形式也可以写成式
(
6
)
(6)
(6)所示的形式:
x
=
A
0
e
−
β
t
cos
(
ω
0
2
−
β
2
t
+
φ
0
)
(6)
x=A _0\mathrm{e}^{-\beta t}\cos(\sqrt{\omega _0^2-\beta^2}t+\varphi _0)\tag{6}
x=A0e−βtcos(ω02−β2t+φ0)(6)
取 x 0 = 1 m , v 0 = − 1 m / s , ω 0 = 10 r a d / s , β = 0.5 s − 1 . x_0=1\ \mathrm m,v _0=-1\mathrm{\ m/s},\omega _0=10\mathrm{\ rad/s},\beta=0.5\mathrm{\ s^{-1}}. x0=1 m,v0=−1 m/s,ω0=10 rad/s,β=0.5 s−1.画出的 x − t x-t x−t图象如下所示:

使用的画图方式为 GeoGebra .后面的图也是用它画的
蓝色的包络线为 x = ± A 0 e − β t x=\pm A_0\mathrm e^{-\beta t} x=±A0e−βt,红色的是弹簧振子 x − t x-t x−t图象。
过阻尼 ( β > ω 0 ) (\beta > \omega _0) (β>ω0)
在这种情况下,
Δ
>
0
\Delta > 0
Δ>0,记
ω
′
=
β
2
−
ω
0
2
\omega'=\sqrt{\beta^2-\omega _0^2}
ω′=β2−ω02,式
(
4
)
(4)
(4)有两根
λ
1
,
2
=
−
β
±
ω
′
(7)
\lambda _{1,2}=-\beta\pm\omega'\tag{7}
λ1,2=−β±ω′(7)
此时运动方程
(
3
)
(3)
(3)的解的形式为
x
=
e
−
β
t
(
A
1
e
ω
′
t
+
A
2
e
−
ω
′
t
)
(8)
x=\mathrm e^{-\beta t}(A _1\mathrm e^{\omega' t}+A _2\mathrm e^{-\omega' t})\tag{8}
x=e−βt(A1eω′t+A2e−ω′t)(8)
取 x 0 = 1 m , v 0 = − 1 m / s , ω 0 = 10 r a d / s , β = 12.5 s − 1 . x_0=1\ \mathrm m,v _0=-1\mathrm{\ m/s},\omega _0=10\mathrm{\ rad/s},\beta=12.5\mathrm{\ s^{-1}}. x0=1 m,v0=−1 m/s,ω0=10 rad/s,β=12.5 s−1.画出的 x − t x-t x−t图象如下所示:

x x x和 v v v都迅速衰减到 0 0 0.
临界阻尼 ( β = ω 0 ) (\beta = \omega _0) (β=ω0)
在这种情况下,
Δ
=
0
\Delta =0
Δ=0,此时
(
4
)
(4)
(4)有重根
λ
1
,
2
=
−
β
(9)
\lambda _{1,2}=-\beta\tag{9}
λ1,2=−β(9)
也可以由此得到运动方程
(
3
)
(3)
(3)的解为
x
=
e
−
β
t
(
A
0
+
A
1
t
)
(10)
x=\mathrm e^{-\beta t}(A _0+A _1t)\tag{10}
x=e−βt(A0+A1t)(10)
取 x 0 = 1 m , v 0 = − 1 m / s , β = ω 0 = 10 r a d / s . x_0=1\ \mathrm m,v _0=-1\mathrm{\ m/s},\beta=\omega _0=10\mathrm{\ rad/s}. x0=1 m,v0=−1 m/s,β=ω0=10 rad/s.画出的 x − t x-t x−t图象如下所示:

x x x和 v v v也是很快地衰减到 0 0 0.
总结
把上面三张图画在一起可以得到下图:

其中,蓝色的是包络线
x
=
±
A
0
e
−
β
t
x=\pm A_0\mathrm e^{-\beta t}
x=±A0e−βt,红色的是欠阻尼情况下的
x
−
t
x-t
x−t图象,橙色的是过阻尼情况下的
x
−
t
x-t
x−t图象,紫色的是临界阻尼情况下的
x
−
t
x-t
x−t图象。在系统只改变
β
\beta
β的情况下,发现临界阻尼情况下弹簧振子最快回到平衡状态。
实际上,可以统一
(
3
)
(3)
(3)的解的形式为
x
=
e
−
β
t
f
(
t
)
x=\mathrm e^{-\beta t}f(t)
x=e−βtf(t).临界阻尼情况下的
f
(
t
)
f(t)
f(t)是多项式,过阻尼情况下的
f
(
t
)
∼
e
∣
ω
′
∣
t
f(t)\sim \mathrm e^{|\omega'|t}
f(t)∼e∣ω′∣t 是指数阶,所以临界阻尼衰减得比过阻尼快。