关于阻尼振动

  任何振动都不可避免地会受到阻力的作用,这时的振动叫做阻尼振动。一般而言,如果物体所受阻力 F f F_f Ff与其速度 v v v成正比,也即有:
F f = − γ v = − γ d x d t (1) F_f=-\gamma v=-\gamma\cfrac{\mathrm dx}{\mathrm dt}\tag{1} Ff=γv=γdtdx(1)

   γ \gamma γ是阻力系数。那么,在弹力、阻力的共同作用下,弹簧振子的运动方程就是:
m d 2 x d t 2 = − k x − γ d x d t (2) m\cfrac{\mathrm d^2x}{\mathrm dt^2}=-kx-\gamma\cfrac{\mathrm dx}{\mathrm dt}\tag{2} mdt2d2x=kxγdtdx(2)

  记 ω 0 = k m , β = γ 2 m \omega_0=\sqrt{\cfrac{k}{m}},\beta=\cfrac{\gamma}{2m} ω0=mk ,β=2mγ.则式 ( 2 ) (2) (2)可化为:
d 2 x d t 2 + 2 β d x d t + ω 0 2 x = 0 (3) \cfrac{\mathrm d^2x}{\mathrm dt^2}+2\beta\cfrac{\mathrm dx}{\mathrm dt}+\omega_0^2x=0\tag{3} dt2d2x+2βdtdx+ω02x=0(3)

  这个微分方程的特征方程是
λ 2 + 2 β λ + ω 0 2 = 0 (4) \lambda^2+2\beta\lambda+\omega_0^2=0\tag{4} λ2+2βλ+ω02=0(4)

  是一个一元二次方程。根据判别式 Δ = 4 ( β 2 − ω 0 2 ) \Delta=4(\beta^2-\omega_0^2) Δ=4(β2ω02)的不同,微分方程 ( 3 ) (3) (3)有三种形式的解。

弱阻尼 ( β < ω 0 ) (\beta < \omega _0) (β<ω0)

  这种情况下, Δ < 0 \Delta < 0 Δ<0,记 ω = ω 0 2 − β 2 \omega=\sqrt{\omega _0^2-\beta^2} ω=ω02β2 ,式 ( 4 ) (4) (4)有共轭复根
λ 1 , 2 = − β ± ω i (5) \lambda _{1,2}=-\beta\pm\omega \mathrm{i}\tag{5} λ1,2=β±ωi(5)

  从而得到 ( 3 ) (3) (3)的解为 x = e − β t ( C 1 cos ⁡ ω t + C 2 sin ⁡ ω t ) x=\mathrm{e}^{-\beta t}(C _1\cos\omega t+C _2\sin\omega t) x=eβt(C1cosωt+C2sinωt).这一形式也可以写成式 ( 6 ) (6) (6)所示的形式:
x = A 0 e − β t cos ⁡ ( ω 0 2 − β 2 t + φ 0 ) (6) x=A _0\mathrm{e}^{-\beta t}\cos(\sqrt{\omega _0^2-\beta^2}t+\varphi _0)\tag{6} x=A0eβtcos(ω02β2 t+φ0)(6)

  取 x 0 = 1   m , v 0 = − 1   m / s , ω 0 = 10   r a d / s , β = 0.5   s − 1 . x_0=1\ \mathrm m,v _0=-1\mathrm{\ m/s},\omega _0=10\mathrm{\ rad/s},\beta=0.5\mathrm{\ s^{-1}}. x0=1 m,v0=1 m/s,ω0=10 rad/s,β=0.5 s1.画出的 x − t x-t xt图象如下所示:

  使用的画图方式为 GeoGebra .后面的图也是用它画的

  蓝色的包络线为 x = ± A 0 e − β t x=\pm A_0\mathrm e^{-\beta t} x=±A0eβt,红色的是弹簧振子 x − t x-t xt图象。

过阻尼 ( β > ω 0 ) (\beta > \omega _0) (β>ω0)

  在这种情况下, Δ > 0 \Delta > 0 Δ>0,记 ω ′ = β 2 − ω 0 2 \omega'=\sqrt{\beta^2-\omega _0^2} ω=β2ω02 ,式 ( 4 ) (4) (4)有两根
λ 1 , 2 = − β ± ω ′ (7) \lambda _{1,2}=-\beta\pm\omega'\tag{7} λ1,2=β±ω(7)

  此时运动方程 ( 3 ) (3) (3)的解的形式为
x = e − β t ( A 1 e ω ′ t + A 2 e − ω ′ t ) (8) x=\mathrm e^{-\beta t}(A _1\mathrm e^{\omega' t}+A _2\mathrm e^{-\omega' t})\tag{8} x=eβt(A1eωt+A2eωt)(8)

  取 x 0 = 1   m , v 0 = − 1   m / s , ω 0 = 10   r a d / s , β = 12.5   s − 1 . x_0=1\ \mathrm m,v _0=-1\mathrm{\ m/s},\omega _0=10\mathrm{\ rad/s},\beta=12.5\mathrm{\ s^{-1}}. x0=1 m,v0=1 m/s,ω0=10 rad/s,β=12.5 s1.画出的 x − t x-t xt图象如下所示:

   x x x v v v都迅速衰减到 0 0 0.

临界阻尼 ( β = ω 0 ) (\beta = \omega _0) (β=ω0)

  在这种情况下, Δ = 0 \Delta =0 Δ=0,此时 ( 4 ) (4) (4)有重根
λ 1 , 2 = − β (9) \lambda _{1,2}=-\beta\tag{9} λ1,2=β(9)

  也可以由此得到运动方程 ( 3 ) (3) (3)的解为
x = e − β t ( A 0 + A 1 t ) (10) x=\mathrm e^{-\beta t}(A _0+A _1t)\tag{10} x=eβt(A0+A1t)(10)

  取 x 0 = 1   m , v 0 = − 1   m / s , β = ω 0 = 10   r a d / s . x_0=1\ \mathrm m,v _0=-1\mathrm{\ m/s},\beta=\omega _0=10\mathrm{\ rad/s}. x0=1 m,v0=1 m/s,β=ω0=10 rad/s.画出的 x − t x-t xt图象如下所示:

   x x x v v v也是很快地衰减到 0 0 0.

总结

  把上面三张图画在一起可以得到下图:

  其中,蓝色的是包络线 x = ± A 0 e − β t x=\pm A_0\mathrm e^{-\beta t} x=±A0eβt,红色的是欠阻尼情况下的 x − t x-t xt图象,橙色的是过阻尼情况下的 x − t x-t xt图象,紫色的是临界阻尼情况下的 x − t x-t xt图象。在系统只改变 β \beta β的情况下,发现临界阻尼情况下弹簧振子最快回到平衡状态。
  实际上,可以统一 ( 3 ) (3) (3)的解的形式为 x = e − β t f ( t ) x=\mathrm e^{-\beta t}f(t) x=eβtf(t).临界阻尼情况下的 f ( t ) f(t) f(t)是多项式,过阻尼情况下的 f ( t ) ∼ e ∣ ω ′ ∣ t f(t)\sim \mathrm e^{|\omega'|t} f(t)eωt 是指数阶,所以临界阻尼衰减得比过阻尼快。

  • 15
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值