(四)傅里叶变换:窗函数法设计FIR滤波器及Matlab实现/Matlab滤波器设计模块/IIR滤波器

目录

前言

1. 窗函数法设计FIR滤波器

2. Matlab中的FIR滤波器实现

2.1 直接写

2.2 Filter Designer工具

3. Matlab中的IIR滤波器实现

4. FIR和IIR对比

结语

前言

本系列最后一篇,记一下FIR滤波器的原理以及Matlab中的使用方法,以及对应使用Matlab中的Filter designer模块设计FIR和IIR滤波器。

1. 窗函数法设计FIR滤波器

按照上一篇的介绍,推导出了对于一串输入信号,其某时刻的响应是输入信号和响应函数的卷积/加权和:

W(t)=\sum_{k=0}^{n-1}u[k]g(t-k)   (1)

基于这个想法,如果我们把输入信号u(t)看成是带噪音的原始信号x(t),想要得到降噪后的信号y(t),就可以通过卷积一个响应函数h(t)来做到,

y(n)=\sum_{k=0}^{N-1}x[k]h_{d}(n-k)=\sum_{k=0}^{N-1}x[n-k]h_{d}(k)  (2)

卷积符合交换律,写成第二个等式这样便于之后推导理解

n代表第n个采样点,N是阶数,即对y(n)展开的层数

而这个h(t)就是我们下面要用的所谓的FIR滤波器(Finite impluse response),理想情况下,它的频域表达式应该是这样(牢记频域相乘等于时域卷积,时域相乘等于频域卷积)

H_{d}(\omega )=\left\{\begin{matrix} 1,|\omega |\epsilon [\omega _{c1},\omega _{c2}]\\ 0, else \end{matrix}\right.   (3)

也就是只希望在系统允许的频率范围\omega _{c1}\omega _{c2}的频率产生作用,对其做逆傅里叶变换,回到时域就长成了这样:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值