XTU 公共的数

文章讨论了一种优化算法的策略,避免完全的暴力枚举以防止超时。主要方法是针对不同情况(如等差数列和指数函数数列的交集)进行分情况讨论,结合最大公因数和最小公倍数的计算,以提高效率。代码示例展示了如何处理特定的数学问题,尤其是在限制数值范围内的计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述如下

 题目本身不能一股脑全部用来暴力枚举,那么一定会超时,分情况讨论,找到每种情况的规律,那么基本上就能过了

 代码如下:

方法:分情况讨论+枚举+求最小的公倍数:乘积/最大公因数

#include<stdio.h>
int gcd(int a,int b);  //取最大公因数的函数
int X[100],Y[100];
int main()
{
	int o;scanf("%d",&o);
	while(o--)
	{
		int a,b,c,d;scanf("%d %d %d %d",&a,&b,&c,&d);
		int cnt=0;
		if(a==1&&c==1)     //a和c都为1的情况
		{
			//也就相当于两个等差数列  首项依次为左边取值全为b的倍数 右边取值全为d的倍数
			cnt=1000000000/(b*d/gcd(b,d));       //相关实例见代码最后的举例部分
		}
		else if(a==1||c==1)    //a和c其中一个为1 --q取a为等差数列
		{
			if(c==1) 
			{
				int t=a,T=b;
				a=1;c=t;b=d;d=T;  //相当于交换x和y   //也就是在一个1的情况下都取左边为等差数列,右边为指数函数数列
			} 
			int y=d;
			while(y<=1000000000)
			{
//调试			printf("here y=%d\n",y);
				if(y%b==0) cnt++;
				y=y*c+d;
			}			
		}
		else if(a!=1&&c!=1)       //a和c都不为1  暴力枚举
		{
			int x=b,y=d;
			int q1=1,q2=1;
			while(x<=1000000000)
			{
//调试			printf("here x=%d\n",x);
				X[q1]=x;
				x=x*a+b;		
				q1++;
			}
			while(y<=1000000000)
			{
//调试			printf("here y=%d\n",y);
				Y[q2]=y;
				y=y*c+d;
				q2++;
			}
			for(int i=1;i<q1;i++)
			{
				for(int j=1;j<q2;j++)
				{
					if(X[i]==Y[j]) cnt++;
				}
			}
		}
		printf("%d\n",cnt);
	}
	return 0;
}
int gcd(int a,int b)
{
	int t;
	while(b!=0)
	{
		t=a%b;
		a=b;
		b=t;
	}
	return a;
}

/*
  //第一种情况 在20范围内 2的等差数列 3的等差数列   按照题意0不考虑
  2 4 6 8 10 12 14 16 18 20
  3 6 9 12 15 18 20 
  6 12 18--相等的情况 既是2的倍数又是3的倍数-----找到两者的最小公倍数6 (int)20/6=3
  
  2 4 6 8 10 12 14 16 18 20
  4 8 12 16 20       
  两者最小公倍数4   20/4=5
  
  
  第二种情况
  全判断即可    一边为b的n倍  另一半的取值不考虑,只要%b==0则cnt+1 
  
  
  第三种情况
  找出两个数组暴力枚举即可
  
 */

 跑不了判题系统,也不知道有没有哪里错了,但是大体上差不多就是这样写的

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

墨白silent

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值