Numpy库

相同计算,Numpy的运行速度是python的25倍

  • 为什么numpy函数如此的高效

a10841dd896741beaee316581e526429.png

 


numpy函数的引用

import numpy as np

创建一个3*3,在一到十之间的数组

np.random.randint(0,1,(3,3))

07727eb356884a8ba7cf030b719c673c.png

  •  随机取样

eab4bd0442bd48c2b12c31d248fee7c2.png

 

numpy包中arange()函数的用法
 

numpy.arange(start, stop, step)

arange()函数有三个参数,参数start表示数组的起始数值,stop参数是数组的终止数值,但是不包括stop这个终止值本身,参数step则是表示数组之间的间隔值。

 

 

shape函数是numpy.core.fromnumeric中的函数,它的功能是读取矩阵的长度,比如shape[0]就是读取矩阵第一维度的长度。

shape的输入参数可以是一个整数(表示维度),也可以是一个矩阵。6492f12ab941418e9c74ea151969a1a3.png

 

 

 

numpy的属性

numpy的数据类型是固定的,向一个整数型数组插入一个浮点值,浮点值会向下取整。

 

 

数组的切片

一维数组和列表一样

 

二维数组

a0fda4b69d3e4ad697c7883af496fef1.png

758addb030c34c4884cd0cb65972e008.png 

 

 

数组的变形 

 

一维数组转变为二维数组

845a111fd3274f72a2e7b6ab599e3f3c.png

 

 

多维转向一维

三种方法

flatten返回的是副本

95b717e36f1c42279b8ddb1f093875ff.png

 

ravel返回的是视图

05af51691080440c9bbc1aba0e4b988b.png

 

reshape返回的是视图

98a373fa3d19404ba8420cc61860eeee.png

 

数组的拼接

水平拼接,行数要相等

cb699014b7d34559973b2609b1bee5ce.png

 

垂直拼接,列数要相等

153994748fc84f35b40a16b585120612.png

数组的分裂

  •  split的用法

bc0ecaabd9914fe8bb6c2c4fd3747aa7.png

f1f4a0c4bda542bfbf5a57d633587dde.png 

 

从第二个和第七个数处断开

 

  • hsplit的用法

fd5a74922f6346989b836fae56b0738b.png

 

  • vsplit的用法 

d477158db78945aa8f6e8c7a1ec5d93f.png

 

numpy的运算

40f1277df3eb40b3a74edc223489f145.png

计算绝对值

 

 

计算三角函数

73fb21aaa08144809df9440a010588ae.png

 

 

83f0c2e118fc468b8a56a645d6259938.png 

 

 

 

相乘

a9d6bfad1e5d4ff2af79499e7512c47a.png

 

21c62f04f3e04ecca492646689a4b43d.png 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值