相同计算,Numpy的运行速度是python的25倍
- 为什么numpy函数如此的高效
numpy函数的引用
import numpy as np
创建一个3*3,在一到十之间的数组
np.random.randint(0,1,(3,3))
- 随机取样
numpy包中arange()函数的用法
numpy.arange(start, stop, step)
arange()函数有三个参数,参数start表示数组的起始数值,stop参数是数组的终止数值,但是不包括stop这个终止值本身,参数step则是表示数组之间的间隔值。
shape函数是numpy.core.fromnumeric中的函数,它的功能是读取矩阵的长度,比如shape[0]就是读取矩阵第一维度的长度。
shape的输入参数可以是一个整数(表示维度),也可以是一个矩阵。
numpy的属性
numpy的数据类型是固定的,向一个整数型数组插入一个浮点值,浮点值会向下取整。
数组的切片
一维数组和列表一样
二维数组
数组的变形
一维数组转变为二维数组
多维转向一维
三种方法
flatten返回的是副本
ravel返回的是视图
reshape返回的是视图
数组的拼接
水平拼接,行数要相等
垂直拼接,列数要相等
数组的分裂
-
split的用法
从第二个和第七个数处断开
-
hsplit的用法
-
vsplit的用法
numpy的运算
计算绝对值
计算三角函数
相乘