TALLRec: An Effective and Efficient Tuning Framework to AlignLarge Language Model with Recommend

论文核心主旨

大模型好用,在很多任务上表现非常好,但是在推荐上现在表现的比较一般,可能的原因是模型训练的时候不太关注推荐的数据去训练。那我做一个微调框架,让大模型可以更好的学会推荐的能力。

结构总览

实验方法

1.将数据处理为微调指令

2. Alpaca调优阶段

利用下面链接中提供的自学数据来训练LLM。具体地说,在调优过程中利用条件语言建模目标,如链接中资源库所示。tloen/alpaca-lora: Instruct-tune LLaMA (github.com)

3.rec-tuning调优阶段

对于rec调优,我们可以使用上图中描述的rec调优示例来调优LLM,类似于Alpaca调优。

实验结果

说几个重点:

1.这个表现的好是在few-shot training 下的,

2.另外这个指标用的只有AUC不知道是不是其他指标表现不太好,一般比较少用这种了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值