自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(22)
  • 收藏
  • 关注

原创 字节 HLLM 论文阅读

提出了提取项目特征的方法。llm在文本理解方面表现出了出色的性能,在项目文本描述的末尾添加一个特殊的令牌[ITEM]来提取特征,类比与Bert的放在末尾的[CLS]。其中因为输入时候emb,所以直接丢弃了tokenizer,但是其他层的权重值留下了,作者说是很有用,不知道真的假的。1.生成式:主要是flow的meta家的HSTU工作,看过的小伙伴,欢迎补充信息。RQ1: LLM的一般预训练和带推荐目标的微调是否提高了最终的推荐性能?本篇文章,主要的创新点其实在与2步走的分层训练,使得训练参数的大小减少。

2024-10-17 15:34:49 1265

原创 gradio在windows上公网发布踩坑指南

如果是:Could not create share link. Please check your internet connection or our status page: https://status.gradio.app。如果是:Could not create share link. Missing file,按照给出的提示下载frpc_windows_amd64v0.2文件,并且按照他的要求修改名称,移动到提示指定的位置。二、你的防火墙卡住了frpc在浏览器的运行解决方式参考下面的文章。

2024-08-06 14:24:25 364

原创 对于在pycharm中终端失去环境 报错-bash: conda: command not found 2024.6

我是在服务器上一个已经创建好conda环境,可以用vscode去执行conda命令。一直报错 -bash: conda: command not found。但是在pycharm上连接之后就一直不能使用conda命令。

2024-06-21 18:29:35 437

原创 Disentangling ID and Modality Effects forSession-based Recommendation 论文阅读 SIGIR 24

为最右边表中对应格子内的计算方式𝑐𝑜𝑢𝑛𝑡(𝑥𝑖,𝑥𝑘)统计两个项目在所有会话中同时出现的次数,而𝑁𝑖是由在与𝑥𝑖的会话中出现的项目组成的项目集。基于共现矩阵,可以显示的知道商品之间的关系(这里这么做是因为会话推荐中用户是匿名的,不知道用户信息则无法得到CF,所以只能得到一个初步的共现信息)在此之后,我们可以推动原因及其代理关闭,同时将不同的原因分开,以解开原因的纠缠。(1) 通过不同的方法在会话中聚合信息使学习到的嵌入显示出细微的差异,同时保留了总体相似的语义,有助于随后的解缠;

2024-06-03 23:00:53 845 1

原创 TALLRec: An Effective and Efficient Tuning Framework to AlignLarge Language Model with Recommend

大模型好用,在很多任务上表现非常好,但是在推荐上现在表现的比较一般,可能的原因是模型训练的时候不太关注推荐的数据去训练。那我做一个微调框架,让大模型可以更好的学会推荐的能力。具体地说,在调优过程中利用条件语言建模目标,如链接中资源库所示。对于rec调优,我们可以使用上图中描述的rec调优示例来调优LLM,类似于Alpaca调优。2.另外这个指标用的只有AUC不知道是不是其他指标表现不太好,一般比较少用这种了。1.这个表现的好是在few-shot training 下的,

2024-06-03 15:59:03 295

原创 Towards Universal Sequence Representation Learningfor Recommender Systems 论文阅读 UniSRec KDD2022

仍有两大挑战需要解决。现有的序列建模都是基于ID的,这样不同的系统之间很难去迁移学习,作者希望提出一个比较通用的序列建模的方式方法,UniSRec方法主要从两方面进行学习,通用商品表征和通用序列表征。这边主要的不同点在于,之前的工作是对于自己域内的样本作为负样本去训练模型,这篇工作是将不同领域下的数据做为负样本,可以有效的增强模型的跨域能力。UniSRec是在下表上半部分的数据集上做预训练的,其中预训练的数据明显是大于微调用的数据集的。在这样的情况下,可以理解我逼迫模型在更少的信息下去区分不同领域的信息。

2024-06-03 13:32:20 438

原创 KAN: Kolmogorov–Arnold Networks 文章理解

最近爆红的KAN,小参数但不算好训练

2024-05-11 00:40:43 1609 1

原创 Recommender AI Agent: Integrating Large Language Models for InteractiveRecommendations 论文阅读 精读

推荐模型和大型语言模型(LLM)之间的优势和不足,并提出了一个名为InterRecAgent的框架,旨在结合两者的优势,创建一个通用的和交互式的推荐系统。

2024-04-08 18:24:10 1845 2

原创 RecMind: Large Language Model Powered Agent For Recommendation 论文阅读

虽然推荐系统(RS)通过深度学习取得了显着进步,但当前的RS方法通常在特定任务的数据集上训练和微调模型,限制了它们对新推荐任务的泛化能力以及由于模型规模和数据大小限制而利用外部知识的能力。设计了一个LLMpowered自主推荐代理,RecMind,它能够利用外部知识,利用精心规划的工具提供zero-shot个性化推荐。我们提出了一种自适应规划算法,以提高规划能力。在每一个中间步骤,LLM“自我启发”考虑所有以前探索的状态,以计划下一步。该机制大大提高了模型理解和利用历史信息进行推荐规划的能力。

2024-03-28 14:09:25 446 1

原创 Large Language Model Augmented Narrative DrivenRecommendations 论文阅读

叙事驱动推荐(Narrative-driven recommendations,NDR)提出了一种信息访问问题,即用户通过详细描述其偏好和上下文来请求推荐,例如,旅行者在请求推荐兴趣点的同时描述其喜欢/不喜欢和旅行情况。经典的用户-项目交互数据集包含丰富的文本数据,例如,评论,通常描述用户偏好和上下文-这可以用于引导NDR模型的训练。在这项工作中,我们探索使用大型语言模型(LLM)进行数据增强来训练NDR模型。

2024-03-21 16:47:08 1756

原创 大模型推荐笔记

用传统的MF得到协同信息,然后二步tuning,第一步Lora只应用Text文本信息,第二步再加入协同信息,进行训练。【1、4】直接把推荐的事例,组织成In-context-example的形式,让LLM对于现有的用户直接做推荐。【2、5、6】对于现有的item做排序(应该是希望类似精排的作用、具体看完文章后补充)【右边】生成式:将用户历史记录做一个序列化,然后直接生成下一个推荐。【3、7】更细致的用户画像,然后导入传统模型、做知识增强。1.冷启动能力非常优秀,吊打现有的传统的会话推荐中的模型。

2024-03-21 10:54:18 249 1

原创 IDEA常用快捷键总结~~持续更新

按自我习惯修改后: ctrl+鼠标中健。按自我习惯修改后: ctrl + D。注释(第一次按时添加,第二次是取消)默认 shift + F10。按自我习惯修改后:alt+R。查看类的层级关系(继承关系)光标定位一个方法的具体位置。默认 :ctrl+Y。默认 :ctrl+D。

2024-02-23 14:39:25 389 1

原创 Follow My Eye: Using Gaze to SuperviseComputer-Aided Diagnosis 论文阅读

当深度神经网络(DNN)首次被引入医学图像分析领域时,研究人员对其性能印象深刻。然而,现在很明显,大量手动标记的数据通常是训练正常运行的DNN所必需的。这种对监督数据和标签的需求是当前医学图像分析的主要瓶颈,因为从有经验的专家那里收集大量注释可能是耗时且昂贵的。在本文中,我们证明了放射科医生阅读医学图像的眼球运动可以成为一种新的监督形式,以训练基于DNN的计算机辅助诊断(CAD)系统。特别地,我们记录了放射科医生在阅读图像时的凝视轨迹。凝视信息被处理,然后通过注意力一致性模块用于监督DNN的注意力。

2023-12-22 16:30:52 455 1

原创 java学习——数组

但是因为堆中开的空间有限制,要在原有数组基础上元素,只能重新开一个长度更长的数组,并拷贝元素,再转移地址。说人话就是,案例一中n2接受的n1的值2,案例二中数组接受的是arr1这个数组的存储位置。int array[ ]=new int[大小] //这里的大小一定要填写。int len=array.length 可以获取数组的长度,整数类型可以被接收。若想重新开一个相同大小地址所在地不一样的数组只需要重新new一个对象就行。int array[ ] //此时array对应的是一个空值。

2023-12-21 15:38:49 316

原创 java学习--switch判断

c的变量形式只能是:byte,short,int,enum ,char,String;c与case中的常量的数据类型必须一致or可以从c的类型转化到case的类型。上面这段代码中的case,必须是常量(或者是常量表达式)不能是变量;default一栏可以用可以无;

2023-12-20 19:58:33 408 1

原创 java学习——原码、反码、补码

由于规则2正数的补码等于原码结果原码:00000000 00000000 00000000 00000010。结果害得看原码:~-2=00000000 00000000 00000000 00000001。2的补码=原码:00000000 00000000 00000000 00000010。3的补码=原码:00000000 00000000 00000000 00000011。2的补码=原码:00000000 00000000 00000000 00000010。结果不是正数不能直接得出原码,需要推导。

2023-12-18 19:56:29 410

原创 java学习——进制转化

因为每3个二进制位刚好可以完整的表达一个8进制位则,只需将3个为一组把2进制的数字转为对应的8进制即可。25%2=1, 25/2=12(向下取整)8是取三个,16就取4个呗原理一样的。不断除二,余数列表从尾向头取。1%2=1,不够除2时停止。10进制 -> 2进制。16进制 -> 2进制。16进制->10进制。则25->11001。2进制 -> 8进制。

2023-12-18 19:24:52 393

原创 java学习——算术运算符p63-85

从运算结果来看,这两个与之间没有区别,具体区别在于&后面的东西会执行,如果你有一些对变量的操作的话。

2023-12-18 18:42:29 373

原创 java学习韩顺平p35-60

java文件的运行逻辑:hello.java --编译--》hello.class --运行--》jvm相对路径:从当前目录生产的一个路径绝对。..\ (表示当前目录的上一级文件)

2023-12-18 17:41:55 400

原创 Sequence classification with human attention 2018 CONLL阅读笔记 --关于如何应用眼动数据与RNN结合

1.解决了什么问题?情绪分类、恶意文本检测的精度不够2.创新点和方法是什么?将凝视信息转化为对于NLp任务的正则方式之一,提升其泛化能力。并首次提出将凝视数据作为一个注意力分数的正则。3.结果和结论是什么?在部分nlp任务中,取得了一个不错的实验成果,验证了凝视数据作为外部数据对于序列神经网络的提升。4.这篇文章对我的研究有什么帮助?得到了不少关于眼动研究的思路,与眼动特征处理的方式。t=N7T8。

2023-12-16 10:25:10 102 1

原创 如何在指定文件夹下打开Jupyter Notebook

解决方式中的 Jupyter开头必须是大写写,我用小写一直报错,但是可能也和你电脑文件定义有关系,可以都尝试一下。notebook后,加一个空格,把目标文件夹拖动到cmd窗口中,回车即可。本文主要对于上面这篇文章进行的修改和补充,也是自己遇到的事实际问题。对于想在指定文件夹内打开Jupyter notebook。Jupyter notebook +文件夹目录。环境必须配置好,详情请自行查询文章。后,win+r,输入cmd;

2023-10-06 10:16:16 1168

原创 记录数据结构学习1.fib函数的非递归代码

fib函数非递归算法

2022-08-14 11:18:42 432

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除