全国大学生数学竞赛非数学类初赛——求极限汇总

文章列举了从第1届到第14届全国大学生数学竞赛非数学类初赛中的极限问题,涉及到泰勒公式(带皮亚诺余项)、定积分的运用以及无穷小的概念。每届的问题都展示了不同的数学知识点和解题技巧,部分题目解析中提到了具体的转化步骤和公式应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第14届:

第13届:

 第12届:

注:此处e^{-x^{2}}的等价无穷小为1,详细可见上一篇文章。

第11届:

第10届:

 第9届:

第8届:

注:第一步到第二步用到了带皮亚诺余项的泰勒公式。

带皮亚诺余项的泰勒公式:

条件:f(x)在x_{0}处有n阶导数;

结论:在x_{0}的邻域内,有f(x)=f(x_{0})+{f}'(x_{0})(x-x_{0})+\frac{​{f}''(x_{0})}{2!}*(x-x_{0})^{2}+\cdots +\frac{f^{(n)}(x_{0})}{n!}*(x-x_{0})^{n}+r_{n}(x)

 其中r_{n}(x)=o((x-x_{0})^{n})

在本题中,f(a+\frac{1}{n})=f(a)+{f}(a)'\frac{1}{n}+o(\frac{1}{n})

第7届:

 注:①和②两个式子的转化用到了定积分的定义公式,推导过程如下:

 第6届:

 第5届:

第4届:

第3届: 

 第2届:

注:关于这题的其他解答方法我还尚存一些疑问,如果解决了,会在后续文章中解释~所以暂时只展示这一种方法。

第1届:

 以上就是一到十四届全国大学生数学竞赛非数学类初赛的极限题了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

蘑菇不开花.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值