超详细讲解算法时间复杂度和空间复杂度

本文详细介绍了算法的时间复杂度和空间复杂度,阐述了衡量算法效率的重要指标。通过斐波那契数列的递归实现为例,讨论了时间复杂度的计算方法,包括大O的渐进表示法。同时,解释了空间复杂度的概念,并给出了常见复杂度的对比。
摘要由CSDN通过智能技术生成

算法效率

算法是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制。也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。
那么如何衡量一个算法的好坏呢?
比如下方的斐波那契数列代码:

long long Fib(int N) {
   
 if(N < 3)
 return 1;
 return Fib(N-1) + Fib(N-2);
}

斐波那契数列的递归实现方式非常简洁,但这种简洁一定好吗?肯定不是,斐波那契数列的递归实现方式显然不满足他的时间复杂度。

算法在编写成可执行程序后,运行时需要耗费时间资源和空间(内存)资源 。因此衡量一个算法的好坏,一般是从时间和空间两个维度来衡量的,即时间复杂度和空间复杂度。
时间复杂度主要衡量一个算法的运行快慢,而空间复杂度主要衡量一个算法运行所需要的额外空间。
在计算机发展的早期,计算机的存储容量很小,所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复杂度。
复杂度在日后的工作面试笔试中都会被重视。
在这里插入图片描述
因此,我们有理由也有必要要将复杂度学好。

时间复杂度

时间复杂度的概念

时间复杂度的定义:在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。一个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知道。但是我们需要每个算法都上机测试吗?是可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个分析方式。一个算法所花费的时间与其中语句的执行次数成正比例。

算法中的基本操作的执行次数,为算法的时间复杂度。
即:找到某条基本语句与问题规模N之间的数学表达式,就是算出了该算法的时间复杂度。
对于下面的例子:它的时间复杂度是多少?

// 请计算一下Func1中++count语句总共执行了多少次?
void Func1(int N) 
{
   
int count = 0;
for (int i = 0; i < N ; ++ i) 
{
   
 for (int j = 0; j < N ; ++ j)
 {
   
 ++count;
 }
}
for (int k <
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值