【算法通关村】透彻理解二分查找

基本查找

循环顺序查找

二分查找与分治

分治:分而治之。把复杂的问题分成两个或更多相同的子问题。直到最后子问题可以简单的直接求解,原问题的解即子问题的解的合并。

  • 循环

 public int binarySearch(int[] array,int low,int high,int target){
     while(low<=high){
         //int mid=(low+high)/2;
         //除的效率非常低,一般用移位来代替
         //int mid = (low+high) >> 1;
         //假如low和high很大,low+high可能会溢出
         //int mid = low + (high - low)>>1;错误的,>>的优先级低于 +-
         //=》 (low+(high-low))>>1
         int mid = low + ((high-low)>>1);        
         
         if(array[mid] == target){
             return mid;
         } else if(array[mid] > target){
             high = mid-1;
         } else {
             low = mid + 1;
         }
     }
 }
  • 递归

 public int binarySearch1(int[] array,int low,int high,int target){
     if(low<=high){
         int mid = low + ((high-low)>>1);
         if(array[mid] == target){
             return mid;
         } else if(array[mid] > target){
             return binarySearch(array,low,mid-1,target);
         } else {
             return binarySearch(array,mid+1,high,target);
         }
     }
 }

元素中有重复的二分查找

如果要重复找左侧第一个

找到了目标值,左移,直到找到左侧第一个。

满足条件就左移。

找到0了,不能左移,直接返回mid。

 public static int search(int[] nums,int target){
     if(num==null || nums.length == 0){
         return -1;
     }
     int left = 0;
     int right = nums.length-1;
     while(left<=right){
         int mid = left+(right-left)/2;
         if(nums[mid]<target){
             left = mid+1;
         } else if(nums[mid]>target){
             right = mid-1;
         } else {
             while(mid != 0 &&nums[mid]==target){
                 mid--;
             }
             if(mid == 0 && nums[mid]==target){
                 return mid;
             }
             return mid+1;
         }
     }
     return -1;
 }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值