深度学习第8周总结

我们介绍了元语法模型, 其中单词在时间步的条件概率仅取决于前面个单词。 对于时间步之前的单词, 如果我们想将其可能产生的影响合并到上, 需要增加,然而模型参数的数量也会随之呈指数增长, 因为词表需要存储个数字, 因此与其将模型化, 不如使用隐变量模型。回想一下,我们在 4节中 讨论过的具有隐藏单元的隐藏层。 值得注意的是,隐藏层和隐状态指的是两个截然不同的概念。 如上所述,隐藏层是在从输入到输出的路径上(以观测角度来理解)的隐藏的层, 而隐状态则是在给定步骤所做的任何事情(以技术角度来定义)的输入, 并且这些状态只能通过先前时间步的数据来计算。变量捕获并保留了序列直到其当前时间步的历史信息, 就如当前时间步下神经网络的状态或记忆, 因此这样的隐藏变量被称为隐状态(hidden state)。 由于在当前时间步中, 隐状态使用的定义与前一个时间步中使用的定义相同, 因此 (8.4.5)的计算是循环的(recurrent)。 于是基于循环计算的隐状态神经网络被命名为 循环神经网络(recurrent neural network)。 在循环神经网络中执行 (8.4.5)计算的层 称为循环层(recurrent layer)。回想一下 8.3节中的语言模型, 我们的目标是根据过去的和当前的词元预测下一个词元, 因此我们将原始序列移位一个词元作为标签。 Bengio等人首先提出使用神经网络进行语言建模 (Bengio et al., 2003)。 接下来,我们看一下如何使用循环神经网络来构建语言模型。 设小批量大小为1,批量中的文本序列为“machine”。 为了简化后续部分的训练,我们考虑使用 字符级语言模型(character-level language model), 将文本词元化为字符而不是单词。 图8.4.2演示了 如何通过基于字符级语言建模的循环神经网络, 使用当前的和先前的字符预测下一个字符。

最后,让我们讨论如何度量语言模型的质量, 这将在后续部分中用于评估基于循环神经网络的模型。 一个好的语言模型能够用高度准确的词元来预测我们接下来会看到什么。 考虑一下由不同的语言模型给出的对“It is raining …”(“…下雨了”)的续写:

  1. “It is raining outside”(外面下雨了);

  2. “It is raining banana tree”(香蕉树下雨了);

  3. “It is raining piouw;kcj pwepoiut”(piouw;kcj pwepoiut下雨了)。

就质量而言,例

显然是最合乎情理、在逻辑上最连贯的。 虽然这个模型可能没有很准确地反映出后续词的语义, 比如,“It is raining in San Francisco”(旧金山下雨了) 和“It is raining in winter”(冬天下雨了) 可能才是更完美的合理扩展, 但该模型已经能够捕捉到跟在后面的是哪类单词。 例则要糟糕得多,因为其产生了一个无意义的续写。 尽管如此,至少该模型已经学会了如何拼写单词, 以及单词之间的某种程度的相关性。 最后,例

表明了训练不足的模型是无法正确地拟合数据的。

我们可以通过计算序列的似然概率来度量模型的质量。 然而这是一个难以理解、难以比较的数字。 毕竟,较短的序列比较长的序列更有可能出现, 因此评估模型产生托尔斯泰的巨著《战争与和平》的可能性 不可避免地会比产生圣埃克苏佩里的中篇小说《小王子》可能性要小得多。 而缺少的可能性值相当于平均数。

在这里,信息论可以派上用场了。 我们在引入softmax回归 ( 3.4.7节)时定义了熵、惊异和交叉熵, 并在信息论的在线附录 中讨论了更多的信息论知识。 如果想要压缩文本,我们可以根据当前词元集预测的下一个词元。 一个更好的语言模型应该能让我们更准确地预测下一个词元。 因此,它应该允许我们在压缩序列时花费更少的比特。 所以我们可以通过一个序列中所有的

个词元的交叉熵损失的平均值来衡量

困惑度的最好的理解是“下一个词元的实际选择数的调和平均数”。 我们看看一些案例。

  • 在最好的情况下,模型总是完美地估计标签词元的概率为1。 在这种情况下,模型的困惑度为1。

  • 在最坏的情况下,模型总是预测标签词元的概率为0。 在这种情况下,困惑度是正无穷大。

  • 在基线上,该模型的预测是词表的所有可用词元上的均匀分布。 在这种情况下,困惑度等于词表中唯一词元的数量。 事实上,如果我们在没有任何压缩的情况下存储序列, 这将是我们能做的最好的编码方式。 因此,这种方式提供了一个重要的上限, 而任何实际模型都必须超越这个上限。

在接下来的小节中,我们将基于循环神经网络实现字符级语言模型, 并使用困惑度来评估这样的模型。

  • 对隐状态使用循环计算的神经网络称为循环神经网络(RNN)。

  • 循环神经网络的隐状态可以捕获直到当前时间步序列的历史信息。

  • 循环神经网络模型的参数数量不会随着时间步的增加而增加。

  • 我们可以使用循环神经网络创建字符级语言模型。

  • 我们可以使用困惑度来评价语言模型的质量。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值