跳台阶扩展问题

剑指offer的一道经典题目,难度简单。

描述

一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶(n为正整数)总共有多少种跳法。

数据范围:1≤n≤20
进阶:空间复杂度 O(1) , 时间复杂度 O(1)

示例1

输入:

3

返回值:

4

示例2

输入:

1

返回值:

1
方法一:动态规划

知识点:动态规划

动态规划算法的基本思想是:将待求解的问题分解成若干个相互联系的子问题,先求解子问题,然后从这些子问题的解得到原问题的解;对于重复出现的子问题,只在第一次遇到的时候对它进行求解,并把答案保存起来,让以后再次遇到时直接引用答案,不必重新求解。动态规划算法将问题的解决方案视为一系列决策的结果。

思路:

我们借鉴斐波那契数列的思想。先初设第一级阶梯的跳法f(1)=1和第零级阶梯的跳法f(0)=0。而f(n)=f(n−1)+f(n−2)+...+f(n−(n−1))+f(n−n)=f(0)+f(1)+f(2)+...+f(n−1)。可以推出f(2)=2*f(1),f(3)=2*f(2)……即f(n)=2∗f(n−1)

具体做法:

  • 第一步:使用动态规划数组,下标i表示第i级台阶的方案数。
  • 第二步:初始化前面两个,即0级一种,1级一种。
  • 第三步:遍历后续,后一个是前一个的两倍。

Java实现代码:

public class Solution {
    public int jumpFloorII(int target) {
        int[] dp = new int[target + 1];
        //初始化前面两个
        dp[0] = 1; 
        dp[1] = 1;
        //依次乘2
        for(int i = 2; i <= target; i++) 
            dp[i] = 2 * dp[i - 1];
        return dp[target];
    }
}

复杂度分析:

  • 时间复杂度:O(n)O(n),其中nn为台阶数,一次遍历
  • 空间复杂度:O(n)O(n),辅助数组dp的长度为nn
方法二:递归

除了用动态规划,我们还可以用递归,因为f(n)=2∗f(n−1),相当于找到子问题,其答案的两倍就是父问题的答案。

  • 终止条件: 递归进入0或者1,可以直接得到方案数为1.
  • 返回值: 将本级子问题得到的方案数的两倍返回给父问题。
  • 本级任务: 进入台阶数减1的子问题。

具体做法:

  • 第一步:若是number为1或者0,直接放回1种方案数。
  • 第二步:其他情况返回子问题答案的2倍。

Java实现代码:

public class Solution {
    public int jumpFloorII(int target) {
        //1或0都是1种
        if(target <= 1) 
            return 1;
        //f(n) = 2*f(n-1)
        return 2 * jumpFloorII(target - 1); 
    }
}

复杂度分析:

  • 时间复杂度:O(n),递归公式为f(n)=f(n−1)+1
  • 空间复杂度:O(n),递归栈最大深度为n
方法三:数学规律

思路:

其实我们可以发现从第一个数1开始,后面每个数都是在前一个数的基础上乘2,而最开始的数字为1,所以f(n)=2^(n−1)

具体做法:

  • 第一步:首先判断number是否小于等于1,如果是,直接得出答案。
  • 第二步:计算f(n)=2n−1f(n)=2n−1。

Java实现代码:

import java.util.*;
public class Solution {
    public int jumpFloorII(int target) {
        if(target <= 1)
            return 1;
        //直接次方
        return (int)Math.pow(2, target - 1); 
    }
}

复杂度分析:

在这个`jumpFloorII`方法中,主要的操作是计算2的(target - 1)次方。这个操作依赖于Java内置的`Math.pow`函数。

`Math.pow`函数的时间复杂度取决于其实现,但通常来说,对于整数指数,它会使用一种快速幂算法(也称为二分幂或平方乘法),这种算法可以在O(log n)时间内完成,其中n是指数,在本例中就是`target - 1`。

因此,该方法`jumpFloorII`的时间复杂度可以认为是O(log(target - 1)),或者简化为O(log target),因为对数函数的底数变化只会影响常数因子,而不影响渐近时间复杂度。

总结一下,`jumpFloorII`方法的时间复杂度是O(log target)。由于这里的操作主要是数学运算,并且不涉及循环或递归调用,所以空间复杂度是O(1),即常数级别的空间复杂度。

可以看到同一道题的解法是多种多样的,不要局限于一种思路。我个人认为其实算法也是我们计算机的另一种八股文,做的越多思路肯定就越开阔。勤能补拙。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值