然后再来四道题练手,前俩道题没有代码难度,主要是理解为什么是这么写的
目录
第一道题:
P1199 [NOIP2010 普及组] 三国游戏 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)
题一思路:
这个起始仔细想想就知道无论如何人都会赢,毕竟人虽然不可以拿到最大的,但是一定可以拿到第二大的,无论如何人都会赢
题二代码:
#include<bits/stdc++.h>
using namespace std;
int a[505][505];
int main() {
int m; cin >> m;
for (int i = 1; i <= m; i++) {
for (int j = i + 1; j <= m; j++) {
cin >> a[i][j];
a[j][i] = a[i][j];
}
}
int ans = 0;
for (int i = 1; i <= m; i++) {
sort(a[i] + 1, a[i] + 1 + m);//进行从小到达对每一行里面的元素进行从小到大排列
ans = max(a[i][m - 1], ans);//前面进行过滤排列则第二大的肯定是倒数第二列的最大值
}
cout << "1"<< endl;
cout << ans << endl;
return 0;
}
第二道题:
P1007 独木桥 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)
题二思路:
这个题就有点意思了,你可以想象一下,当你在高空万米看下面他们移动,你是不能判断他们面朝哪一个方向的且如果改变方向,你所看到的就像一个人从另外一个人身上穿过,理解了这个就好说了,可以直接上代码。
题二代码:
#include<bits/stdc++.h>
using namespace std;
int a[5005];
int main() {
int L, n; cin >> L >> n;
int Max = 0, Min = 0;
for (int i = 1; i <= n; i++) {
cin >> a[i];
Max = max(Max, max(a[i], L - a[i] + 1));
Min = max(Min, min(a[i], L - a[i] + 1));
}
cout << Min << " " << Max << endl;
return 0;
}
第三道题:
P1223 排队接水 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)
题三思路:
这个思路上没有啥难点,就是谁等的时间少就先让谁排前面,主要是如何表示,我是用了结构体表示。
题三代码:
#include<bits/stdc++.h>
using namespace std;
struct person {
int id;
int time;
};
person a[1005];
int main() {
int n; cin >> n;
for (int i = 1; i <= n; i++) {
int x; cin >> x;
a[i].id = i;
a[i].time = x;
}
sort(a + 1, a + 1 + n, [](person a, person b) { return (a.time < b.time) || (a.time == b.time && a.id < b.id); });
for (int i = 1; i <= n; i++) {
cout << a[i].id << " ";
}
cout << endl;
double sum = 0,ans;
for (int i = 1; i <= n; i++) {
sum += a[i].time * (n - i);
}
ans = sum / n;
cout << fixed << setprecision(2) << ans << endl;
return 0;
}
第四道题:
P1090 [NOIP2004 提高组] 合并果子 / [USACO06NOV] Fence Repair G - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)
题四思路:
这最简方案一定的每组最小和次小相合并后再与第三小进行合并,再依此类推,唔,证明的话可以去看看洛谷的题解,那么现在的难点是如何进行操作,排序很简单,但是每一次的重复相加则时间复杂度爆表,那么有啥简便的方法可以解决问题嘛,答案是优先队列
题四代码:
#include<bits/stdc++.h>
using namespace std;
priority_queue<int, vector<int>, greater<int> >Q;
int main() {
int n, m, sum=0;
cin >> n;
for (int i = 1; i <= n; i++) cin >> m, Q.push(m);
while (Q.size() >= 2) {
int a = Q.top(); Q.pop();
int b = Q.top(); Q.pop();
sum += a + b;
Q.push(a + b);//将俩者之和放入其中
}
cout << sum << endl;
return 0;
}