今天学了部分stl函数(vector,stack,queue,dqueue,priority_queue)的运用,了解了堆的一些性质,堆其实是一棵完全二叉树,小根堆,就是父节点小于子结点,大根堆就是父节点大于子节点,而stl函数中的priority_queue的底层便是堆.
//#include<queue>//优先队列的头
//#include<vector>//vector的头
priority_queue<int>q;//默认为大根堆
priority_queue<int ,vector<int>,greater<int>>q;//小根堆
priority_queue<int,vector<int>,less<int>>p;//大根堆
q.push(element)//数据入队
q.pop();//队首出队
q.top();//访问队首元素
P3378 【模板】堆
题目描述
给定一个数列,初始为空,请支持下面三种操作:
给定一个整数 xx,请将 xx 加入到数列中。
输出数列中最小的数。
删除数列中最小的数(如果有多个数最小,只删除 11 个)。
输入格式
第一行是一个整数,表示操作的次数 nn。
接下来 nn 行,每行表示一次操作。每行首先有一个整数 opop 表示操作类型。
若 op = 1op=1,则后面有一个整数 xx,表示要将 xx 加入数列。
若 op = 2op=2,则表示要求输出数列中的最小数。
若 op = 3op=3,则表示删除数列中的最小数。如果有多个数最小,只删除 11 个。
输出格式
对于每个操作 22,输出一行一个整数表示答案。
输入输出样例
输入 #1复制
5
1 2
1 5
2
3
2
输出 #1复制
2
5
说明/提示
【数据规模与约定】
对于 30\%30% 的数据,保证 n \leq 15n≤15。
对于 70\%70% 的数据,保证 n \leq 10^4n≤104。
对于 100\%100% 的数据,保证 1 \leq n \leq 10^61≤n≤106,1 \leq x \lt 2^{31}1≤x<231,op \in \{1, 2, 3\}op∈{1,2,3}。
思路:利用优先队列的底层是堆这一性质,小根堆的性质,队首一定是最小的元素,因此我们可以轻松AC掉这题
#include<bits/stdc++.h>
using namespace std;
priority_queue <int,vector<int>,greater<int>>q;//设置为小根堆
int main()
{
int n,x,t;
scanf("%d",&n);//n次操作
for(int i=0;i<n;i++)
{
scanf("%d",&x);//操作提示
if(x==1)
{
scanf("%d",&t);
q.push(t);//入队
}
if(x==2)
{
t=q.top();//访问队首
printf("%d\n",t);
}
if(x==3)
{
q.pop();//队首出队
}
}
return 0;
}