欧拉函数、快速幂、扩展欧几里得算法、中国剩余定理

 数据结构、算法总述:数据结构/算法 C/C++-CSDN博客


欧拉函数

欧拉函数(Euler's totient function)是一个与正整数n相关的数论函数,通常用φ(n)表示。定义为小于或等于n的正整数中与n互质的数的个数

int phi(int x)
{
    int res = x;
    for (int i = 2; i <= x / i; i ++ )
        if (x % i == 0)
        {
            res = res / i * (i - 1);
            while (x % i == 0) x /= i;
        }
    if (x > 1) res = res / x * (x - 1);

    return res;
}

筛法求欧拉函数

int primes[N], cnt;     // primes[]存储所有素数
int euler[N];           // 存储每个数的欧拉函数
bool st[N];         // st[x]存储x是否被筛掉


void get_eulers(int n)
{
    euler[1] = 1;
    for (int i = 2; i <= n; i ++ )
    {
        if (!st[i])
        {
            primes[cnt ++ ] = i;
            euler[i] = i - 1;
        }
        for (int j = 0; primes[j] <= n / i; j ++ )
        {
            int t = primes[j] * i;
            st[t] = true;
            if (i % primes[j] == 0)
            {
                euler[t] = euler[i] * primes[j];
                break;
            }
            euler[t] = euler[i] * (primes[j] - 1);
        }
    }
}

快速幂

求 m^k mod p,时间复杂度 O(logk)。

int qmi(int m, int k, int p)
{
    int res = 1 % p, t = m;
    while (k)
    {
        if (k&1) res = res * t % p;
        t = t * t % p;
        k >>= 1;
    }
    return res;
}

扩展欧几里得算法

// 求x, y,使得ax + by = gcd(a, b)
int exgcd(int a, int b, int &x, int &y)
{
    if (!b)
    {
        x = 1; y = 0;
        return a;
    }
    int d = exgcd(b, a % b, y, x);
    y -= (a/b) * x;
    return d;
}

中国剩余定理及其扩展

typedef long long LL;

LL exgcd(LL a,LL b,LL &x,LL &y)
{
    if(b==0)
    {
        x=1,y=0;
        return a;
    }
    LL d=exgcd(b,a%b,y,x);
    y -= (a/b) * x;
    return d;
}

LL CRT(LL m[],LL r[])
{
    LL m=1,ans=0;
    for(int i=1;i<=n;i++)  M*=m[i];
    for(int i=1;i<=n;i++)
    {
        LL c=M/m[i],x,y;
        exgcd(c,m[i],x,y);
        ans=(ans+r[i]*c*x%M)%M;
    }
    return (ans%M+M)%M;
}

typedef long long LL;

LL exgcd(LL a,LL b,LL &x,LL &y)
{
    if(b==0)
    {
        x=1,y=0;
        return a;
    }
    LL d=exgcd(b,a%b,y,x);
    y -= (a/b) * x;
    return d;
}

LL EXCRT(LL m[],LL r[])
{
    LL m1,m2,r1,r2,p,q;
    m1=m[1],r1=r[1];
    for(int i=2;i<=n;i++)
    {
        m2=m[i],r2=r[i];
        LL d = exgcd(m1,m2,p,q);
        if((r2-r1)%d)  return -1;
        p=p*(r2-r1)/d;//特解
        p=(p%(m2/d)+m2/d)%(m2/d);
        r1=m1*p+r1;
        m1=m1*m2/d;
    }

    return (r1%m1+m1)%m1;
}

 

  • 15
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

禊月初三

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值