2023/6/11---个人总结

H - Writing a Numeral

使用队列完成操作,并预处理把10的1-6e5次方计算出来(模上mod之后的值)
1操作:ans = (ans * 10 + x) % mod;
2操作:ans-首个元素乘以10的n次方可能为负数,所以结果要+mod再%mod,ans = (((ans - q[top] * mo[rear - top]) % mod) + mod) % mod;
typedef long long ll;
ll ans;
const int mod= 998244353;
const int N=6e5+5;
int q[N];
ll mo[N];
int top,rear;
void solve() {
    int n, x;
    cin >> n;
    if (n == 1) {
        cin >> x;
        q[++rear] = x;
        ans = (ans * 10 + x) % mod;
    } else if (n == 2) {
        ans = (((ans - q[top] * mo[rear - top]) % mod) + mod) % mod;
        top++;
    } else {
        cout << ans << '\n';
    }
}

int main() {
    ios::sync_with_stdio(false);
    mo[0]=1;
    for(int i=1;i<=600000;i++) {
        mo[i] = (mo[i - 1] * 10) % mod;
    }
    int t;
    cin >> t;
    ans = 1;
    q[++top]=1;
    rear++;
    while (t--)
        solve();
    return 0;
}

G - Round Trip

题目给定范围是n*m<=1e6,所以我用了vector可变长数组来存储数据,题目需要从起点出发,再回到起点,所有点只能走一遍,所以我们从起点旁边开始搜索,看能不能回到起点另一个旁边,如果能,则输出Yes,否则输出No。
const int N=1e6+5;
typedef struct{
    int x,y;
}node;
vector<char>f[N];
int dx[4]={0,0,1,-1};
int dy[4]={1,-1,0,0};
int n, m;
int ex,ey;
int bfs(int x,int y,int nx,int ny) {
    if (x == nx && y == ny)return 0;
    queue<node> q;
    q.push(node{x, y});
    vector<int> vis[n];
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < m; j++)vis[i].push_back(0);
    }
    vis[ex][ey] = 1;
    vis[x][y] = 1;
    while (!q.empty()) {
        x = q.front().x;
        y = q.front().y;
        q.pop();
        if (x == nx && y == ny) {
            cout << "Yes\n";
            return 1;
        }
        for (int i = 0; i < 4; i++) {
            int x1 = x + dx[i];
            int y1 = y + dy[i];
            if (x1 < 0 || y1 < 0 || x1 >= n || y1 >= m || f[x1][y1] == '#' || vis[x1][y1])continue;
            q.push(node{x1, y1});
            vis[x1][y1] = 1;
        }
    }
    return 0;
}

void solve() {
    cin >> n >> m;
    int x, y;
    string s;
    for (int i = 0; i < n; i++) {
        cin >> s;
        for (int j = 0; j < m; j++) {
            f[i].push_back(s[j]);
            if (f[i][j] == 'S') {
                x = i, y = j;
                ex = x, ey = y;
            }
        }
    }
    int f1 = 0;
    for (int i = 0; i < 4; i++) {
        int x1 = x + dx[i];
        int y1 = y + dy[i];
        if (x1 < 0 || y1 < 0 || x1 >= n || y1 >= m || f[x1][y1] == '#')continue;
        for (int j = 0; j < 4; j++) {
            int x2 = x + dx[j];
            int y2 = y + dy[j];
            if (x2 < 0 || y2 < 0 || x2 >= n || y2 >= m || f[x2][y2] == '#')continue;
            f1 = bfs(x1, y1, x2, y2);
            if (f1)return;
        }
    }
    cout << "No\n";
}

I - Copy and Paste Graph

用到了floyd算法,计算多源最短路径。由于k的数据范围太大,所有要把查询时输入的顶点信息变为在原矩阵的顶点。

const int inf = 1e9+5;
long long g[105][105];
int n,k;
void floyd() {
    for (int z = 1; z <= n; z++)
        for (int i = 1; i <= n; i++)
                for (int j = 1; j <= n; j++)
                    if (g[i][j] > g[i][z] + g[z][j])
                        g[i][j] = g[i][z] + g[z][j];
}
void solve() {
    cin >> n >> k;
    for (int i = 1; i <= n; i++) {
        for (int j = 1; j <= n; j++) {
            cin >> g[i][j];
            if (g[i][j] == 0)
                g[i][j] = inf;
        }
    }
    floyd();
    int q;
    cin >> q;
    long long u, v;
    while (q--) {
        cin >> u >> v;
        if (u > n)u = (u % n) == 0 ? n : u % n;
        if (v > n)v = (v % n) == 0 ? n : v % n;
        if (g[u][v] == inf)g[u][v] = -1;
        cout << g[u][v] << '\n';
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

akb000

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值