生物统计学(biostatistics)笔记-2.传统生物统计学

目录

概述

概念

1、总体与样本

2、变量与常量

3、 参数与统计数

4、效应与互作

5、错误、随机误差与系统误差

6、准确性(accuracy)VS精确性(precission)

7、变量分布的集中性VS离散性

实验设计 

1、原则

2、抽样-样本的代表性

3、变量的统计归纳

4、概率分布

5、假设检验

6、相关性分析​编辑

考试重点

 1、概念:效应与互作、三种误差、准确性与精确性

2、箱式图

3、假设检验


概述

  • 1、统计学是收集、分析、列示和解释数据的艺术
  • 传统生物统计学主要关注于使用标准的统计方法来分析生物、医学数据,包括描述性统计、假设检验、回归分析等。
  • 传统生物统计学基本框架如下图

概念

1、总体与样本

  • 总体:具有相同性质或属性的个体所组成的集合,按照个体数量是否有限分为有限总体和无限总体。

  • 个体:组成总体的基本单元。

  • 样本:从总体中抽出若干个体所构成的集合   

  • 样本单位:构成样本的每个个体

  • 样本容量(样本大小):样本中所包含的个体数目,常记为n。  一般在生物学研究中,<30为小样本,>=30为大样本。

2、变量与常量

  • 变量( x_i ) : 指相同性质的事物间表现差异性或差异特征的数据。
  • 常数( \mu): 表示能代表事物特征和性质的数值,在一定过程中是不变的。

3、 参数与统计数

  • 参数:描述总体特征的数,通常未知。e.g.总体平均数(\mu),总体方差(\sigma ^2)
  • 统计数:描述样本特征的数,是样本观测值的已知函数。e.g.样本平均数( \bar{x} ),样本方差(s^2)
  • 对总体的推断是通过统计数进行的

4、效应与互作

  • 效应:通过施加试验处理,引起试验差异的作用。 效应是一个相对量,而非绝对量,表现为施加处理前后的差异。效应有正效应与负效应之分。
  • 互作(连应):是指两个或两个以上处理因素间相互作用产生的效应。 互作也有正效应(协同作用)与负效应(拮抗作用)之分。

5、错误、随机误差与系统误差

  • 错误,又称过失性误差(gross error) 。在试验过程中,由于人为因素引起的差错。 e.g.仪器校正不准、药品配制比例不当、称量不准确、计算出错等。这类错误是不允许出现的。

  • 随机误差,也叫抽样误差(sampling error) 。这是由于试验中无法控制的内在和外在的偶然因素所造成。统计上的试验误差一般都指随机误差。随机误差越小,试验精确性越高。

  • 系统误差,也叫片

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值