NNDL 作业3:分别使用numpy和pytorch实现FNN例题

目录

过程推导 - 了解BP原理

 数值计算 - 手动计算,掌握细节

 代码实现 - numpy手推 + pytorch自动

          对比【numpy】和【pytorch】程序,总结并陈述。

          激活函数Sigmoid用PyTorch自带函数torch.sigmoid(),观察、总结并陈述。

          激活函数Sigmoid改变为Relu,观察、总结并陈述。

          损失函数MSE用PyTorch自带函数 t.nn.MSELoss()替代,观察、总结并陈述。

          损失函数MSE改变为交叉熵,观察、总结并陈述。

          改变步长,训练次数,观察、总结并陈述。

          权值w1-w8初始值换为随机数,对比“指定权值”的结果,观察、总结并陈述。

          权值w1-w8初始值换为0,观察、总结并陈述。

心得体会。



  1. 过程推导 - 了解BP原理
  2. 数值计算 - 手动计算,掌握细节
  3. 代码实现 - numpy手推 + pytorch自动

代码实现:

  •  对比【numpy】和【pytorch】程序,总结并陈述。
  • 激活函数Sigmoid用PyTorch自带函数torch.sigmoid(),观察、总结并陈述。
  • 激活函数Sigmoid改变为Relu,观察、总结并陈述。
  • 损失函数MSE用PyTorch自带函数 t.nn.MSELoss()替代,观察、总结并陈述。
  • 损失函数MSE改变为交叉熵,观察、总结并陈述。
  • 改变步长,训练次数,观察、总结并陈述。
  • 权值w1-w8初始值换为随机数,对比“指定权值”的结果,观察、总结并陈述。
  • 权值w1-w8初始值换为0,观察、总结并陈述。
  • 全面总结反向传播原理和编码实现,认真写心得体会。
     

过程推导 - 了解BP原理

BP算法的核心思想:使用梯度下降来搜索可能的权向量的假设空间,以找到最佳的拟合样例的权向量。具体而言,即利用损失函数,每次向损失函数负梯度方向移动,直到损失函数取得最小值。

 或者说,反向传播算法,是根据损失函数,求出损失函数关于每一层的权值及偏置项的偏导数,也称为梯度,用该值更新初始的权值和偏置项,一直更新到损失函数取得最小值或是设置的迭代次数完成为止。以此来计算神经网络中的最佳的参数。

BP算法是一个迭代算法,它的原理是(1)先计算每一层的状态和激活值,直到最后一层(即信号是前向传播的);(2)计算每一层的误差,误差的计算过程是从最后一层向前推进的(这就是反向传播算法名字的由来);(3)更新参数(目标是误差变小),迭代前面两个步骤,直到满足停止准则(比如相邻两次迭代的误差的差别很小)

 

 

 数值计算 - 手动计算,掌握细节

 代码实现 - numpy手推 + pytorch自动

numpy

import numpy as np

w1, w2, w3, w4, w5, w6, w7, w8 = 0.2, -0.4, 0.5, 0.6, 0.1, -0.5, -0.3, 0.8
x1, x2 = 0.5, 0.3
y1, y2 = 0.23, -0.07
print("输入值 x0, x1:", x1, x2)
print("输出值 y0, y1:", y1, y2)


def sigmoid(z):
    a = 1 / (1 + np.exp(-z))
    return a


def forward_propagate(x1, x2, y1, y2, w1, w2, w3, w4, w5, w6, w7, w8):
    in_h1 = w1 * x1 + w3 * x2
    out_h1 = sigmoid(in_h1)
    in_h2 = w2 * x1 + w4 * x2
    out_h2 = sigmoid(in_h2)

    in_o1 = w5 * out_h1 + w7 * out_h2
    out_o1 = sigmoid(in_o1)
    in_o2 = w6 * out_h1 + w8 * out_h2
    out_o2 = sigmoid(in_o2)

    print("正向计算,隐藏层h1 ,h2:", end="")
    print(round(out_h1, 5), round(out_h2, 5))
    print("正向计算,预测值o1 ,o2:", end="")
    print(round(out_o1, 5), round(out_o2, 5))

    error = (1 / 2) * (out_o1 - y1) ** 2 + (1 / 2) * (out_o2 - y2) ** 2

    print("损失函数(均方误差):",round(error, 5))

    return out_o1, out_o2, out_h1, out_h2


def back_propagate(out_o1, out_o2, out_h1, out_h2):
    # 反向传播
    d_o1 = out_o1 - y1
    d_o2 = out_o2 - y2

    d_w5 = d_o1 * out_o1 * (1 - out_o1) * out_h1
    d_w7 = d_o1 * out_o1 * (1 - out_o1) * out_h2
    d_w6 = d_o2 * out_o2 * (1 - out_o2) * out_h1
    d_w8 = d_o2 * out_o2 * (1 - out_o2) * out_h2

    d_w1 = (d_o1 * out_h1 * (1 - out_h1) * w5 + d_o2 * out_o2 * (1 - out_o2) * w6) * out_h1 * (1 - out_h1) * x1
    d_w3 = (d_o1 * out_h1 * (1 - out_h1) * w5 + d_o2 * out_o2 * (1 - out_o2) * w6) * out_h1 * (1 - out_h1) * x2
    d_w2 = (d_o1 * out_h1 * (1 - out_h1) * w7 + d_o2 * out_o2 * (1 - out_o2) * w8) * out_h2 * (1 - out_h2) * x1
    d_w4 = (d_o1 * out_h1 * (1 - out_h1) * w7 + d_o2 * out_o2 * (1 - out_o2) * w8) * out_h2 * (1 - out_h2) * x2

    print("w的梯度:",round(d_w1, 2), round(d_w2, 2), round(d_w3, 2), round(d_w4, 2), round(d_w5, 2), round(d_w6, 2),
          round(d_w7, 2), round(d_w8, 2))

    return d_w1, d_w2, d_w3, d_w4, d_w5, d_w6, d_w7, d_w8


def update_w(w1, w2, w3, w4, w5, w6, w7, w8):
    # 步长
    step = 1
    w1 = w1 - step * d_w1
    w2 = w2 - step * d_w2
    w3 = w3 - step * d_w3
    w4 = w4 - step * d_w4
    w5 = w5 - step * d_w5
    w6 = w6 - step * d_w6
    w7 = w7 - step * d_w7
    w8 = w8 - step * d_w8
    return w1, w2, w3, w4, w5, w6, w7, w8


if __name__ == "__main__":

    print("权值w0-w7:",round(w1, 2), round(w2, 2), round(w3, 2), round(w4, 2), round(w5, 2), round(w6, 2), round(w7, 2),
          round(w8, 2))


    for i in range(5):
        print("=====第" + str(i+1) + "轮=====")
        out_o1, out_o2, out_h1, out_h2 = forward_propagate(x1, x2, y1, y2, w1, w2, w3, w4, w5, w6, w7, w8)
        d_w1, d_w2, d_w3, d_w4, d_w5, d_w6, d_w7, d_w8 = back_propagate(out_o1, out_o2, out_h1, out_h2)
        w1, w2, w3, w4, w5, w6, w7, w8 = update_w(w1, w2, w3, w4, w5, w6, w7, w8)

    print("更新后的权值w:",round(w1, 2), round(w2, 2), round(w3, 2), round(w4, 2), round(w5, 2), round(w6, 2), round(w7, 2),
          round(w8, 2))

 pytorch

import torch

x = [0.5, 0.3]  # x0, x1 = 0.5, 0.3
y = [0.23, -0.07]  # y0, y1 = 0.23, -0.07
print("输入值 x0, x1:", x[0], x[1])
print("输出值 y0, y1:", y[0], y[1])
w = [torch.Tensor([0.2]), torch.Tensor([-0.4]), torch.Tensor([0.5]), torch.Tensor(
    [0.6]), torch.Tensor([0.1]), torch.Tensor([-0.5]), torch.Tensor([-0.3]), torch.Tensor([0.8])]  # 权重初始值
for i in range(0, 8):
    w[i].requires_grad = True
print("权值w0-w7:")
for i in range(0, 8):
    print(w[i].data, end="  ")


def forward_propagate(x):  # 计算图
    in_h1 = w[0] * x[0] + w[2] * x[1]
    out_h1 = torch.sigmoid(in_h1)
    in_h2 = w[1] * x[0] + w[3] * x[1]
    out_h2 = torch.sigmoid(in_h2)

    in_o1 = w[4] * out_h1 + w[6] * out_h2
    out_o1 = torch.sigmoid(in_o1)
    in_o2 = w[5] * out_h1 + w[7] * out_h2
    out_o2 = torch.sigmoid(in_o2)

    print("正向计算,隐藏层h1 ,h2:", end="")
    print(out_h1.data, out_h2.data)
    print("正向计算,预测值o1 ,o2:", end="")
    print(out_o1.data, out_o2.data)

    return out_o1, out_o2


def loss(x, y):  # 损失函数
    y_pre = forward_propagate(x)  # 前向传播
    loss_mse = (1 / 2) * (y_pre[0] - y[0]) ** 2 + (1 / 2) * (y_pre[1] - y[1]) ** 2  # 考虑 : t.nn.MSELoss()
    print("损失函数(均方误差):", loss_mse.item())
    return loss_mse


if __name__ == "__main__":
    for k in range(5):
        print("\n=====第" + str(k+1) + "轮=====")
        l = loss(x, y)  # 前向传播,求 Loss,构建计算图
        l.backward()  # 反向传播,求出计算图中所有梯度存入w中. 自动求梯度,不需要人工编程实现。
        print("w的梯度: ", end="  ")
        for i in range(0, 8):
            print(round(w[i].grad.item(), 2), end="  ")  # 查看梯度
        step = 1  # 步长
        for i in range(0, 8):
            w[i].data = w[i].data - step * w[i].grad.data  # 更新权值
            w[i].grad.data.zero_()  # 注意:将w中所有梯度清零
        print("\n更新后的权值w:")
        for i in range(0, 8):
            print(w[i].data, end="  ")

 

 对比【numpy】和【pytorch】程序,总结并陈述。

根据结果可看得两种方法求解效果基本相同。对比来看看,w的梯度都相同,但是使用pytorch的结果精度较高一点,例如损失函数,权值w等。
 

激活函数Sigmoid用PyTorch自带函数torch.sigmoid(),观察、总结并陈述。

sigmoid函数

                  f(x)=\frac{1}{1+e^{-x}}

 

def forward_propagate(x1, x2):
    in_h1 = w1 * x1 + w3 * x2
    out_h1 = torch.sigmoid(in_h1)
    in_h2 = w2 * x1 + w4 * x2
    out_h2 = torch.sigmoid(in_h2)
    in_o1 = w5 * out_h1 + w7 * out_h2
    out_o1 = torch.sigmoid(in_o1)
    in_o2 = w6 * out_h1 + w8 * out_h2
    out_o2 = torch.sigmoid(in_o2)
 
    print("正向计算:o1 ,o2")
    print(out_o1.data, out_o2.data)
 
    return out_o1, out_o2

因为sigmoid函数的导数等于他本身在反向传播的求导中起到重要作用

无较大差距


激活函数Sigmoid改变为Relu,观察、总结并陈述。

Relu函数

def relu(z):
    return np.maximum(0, z)

 

 Relu函数比Sigmoid函数收敛速度快


损失函数MSE用PyTorch自带函数 t.nn.MSELoss()替代,观察、总结并陈述。

def loss_fuction(x1, x2, y1, y2):  # 损失函数
    y1_pred, y2_pred = forward_propagate(x1, x2)  # 前向传播
    # loss = (1 / 2) * (y1_pred - y1) ** 2 + (1 / 2) * (y2_pred - y2) ** 2  # 考虑 : t.nn.MSELoss()
    loss_func = torch.nn.MSELoss() # 创建损失函数
    y_pred = torch.cat((y1_pred, y2_pred), dim=0) # 将y1_pred, y2_pred合并成一个向量
    y = torch.cat((y1, y2), dim=0) # 将y1, y2合并成一个向量
    loss = loss_func(y_pred, y) # 计算损失
    print("损失函数(均方误差):", loss.item())
    return loss

 

训练轮数增多原代码比自带函数收敛效果好


损失函数MSE改变为交叉熵,观察、总结并陈述。

交叉熵是用来评估当前训练得到的概率分布与真实分布的差异情况,也就是交叉熵的值越小,两个概率分布就越接近。减少交叉熵损失就是在提高模型的预测准确率。其离散函数形式

H(p,q)=- \sum_{x}^{}p(x)log(q(x))

def loss_fuction(x1, x2, y1, y2):
    y1_pred, y2_pred = forward_propagate(x1, x2)
    loss_func = torch.nn.CrossEntropyLoss() # 创建交叉熵损失函数
    y_pred = torch.stack([y1_pred, y2_pred], dim=1)
    y = torch.stack([y1, y2], dim=1)
    loss = loss_func(y_pred, y) # 计算
    print("损失函数(交叉熵损失):", loss.item())
    return loss

损失函数出现负数,可以看出交叉熵损失函数不适用与预测


改变步长,训练次数,观察、总结并陈述。

 改变步长

步长1

 步长20

步长增加,均方误差下降越快,收敛越快 

 改变训练次数

次数10

 次数500

 训练次数增大,均方误差下降速度也在逐渐降低,收敛速度下降


权值w1-w8初始值换为随机数,对比“指定权值”的结果,观察、总结并陈述。

 

w = [torch.randn(1, 1), torch.randn(1, 1), torch.randn(1, 1), torch.randn(1, 1), torch.randn(1, 1), torch.randn(1, 1), torch.randn(1, 1), torch.randn(1, 1) ]
 # 权重初始值

 

 

 收敛无影响,均方误差的下降速度和指定权重值有所减低

权值w1-w8初始值换为0,观察、总结并陈述。

w1, w2, w3, w4, w5, w6, w7, w8 = torch.Tensor([0]), torch.Tensor([0]), torch.Tensor([0]), torch.Tensor([0]), torch.Tensor([0]), torch.Tensor([0]), torch.Tensor([0]), torch.Tensor([0])

  权值改变,收敛速度基本不变


心得体会。
 

深入理解了BP算法的原理和推导过程,其中又涉及到上学期西瓜书里的知识,虽然上学期期末考试考过,但如今已经确实有所遗忘,再来一遍,加深印象,掌握细节。

通过代码的替换修改,知道了更改步长、迭代次数、损失函数、激活函数对收敛速度和结果的影响,运行的结果纵向对比,更直观,使得印象更加深刻。

ref: 

【2021-2022 春学期】人工智能-作业2:例题程序复现_HBU_David的博客-CSDN博客

【2021-2022 春学期】人工智能-作业3:例题程序复现 PyTorch版_HBU_David的博客-CSDN博客


   https://blog.csdn.net/qq_38975453/article/details/127075861

神经网络之BP算法(图说神经网络+BP算法理论推导+例子运用+代码)_初始之时于你-DevPress官方社区

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值