ACwing算法备战蓝桥杯——Day23——快速幂与逆元

模板:

思路:

对于暴力法,要进行k次res*a%p这一操作。但是k可以通过二进制法凑出来,对于int类型的k最多进行31次操作就可以凑出。

并且k是a的阶数,每次k的变化可以转换成a进行平方;(通过二进制凑数的方法很常见)

主要内容

参数

作用

函数pmi()

int a , int k , int p

在将求(a^k mod p)的时间复杂度从O(k)降到O(log k);

求 m^k mod p,时间复杂度 O(logk)。

int qmi(int m, int k, int p)
{
    int res = 1 % p, t = m;
    while (k)
    {
        if (k&1) res = res * t % p;
        t = t * t % p;//每次都会乘,所以也叫反复平方法
        k >>= 1;
    }
    return res;
}

要注意的是,数据范围是否会爆int.

模板题1:

给定 n 组 ai,bi,pi,对于每组数据,求出 abiimodpi 的值。

输入格式
第一行包含整数 n。

接下来 n 行,每行包含三个整数 ai,bi,pi。

输出格式
对于每组数据,输出一个结果,表示 abiimodpi 的值。

每个结果占一行。

数据范围
1≤n≤100000,
1≤ai,bi,pi≤2×109
输入样例:
2
3 2 5
4 3 9
输出样例:
4
1

代码:
#include <iostream>
#include <cmath>
#include <vector>
using namespace std;

typedef long long LL;

const int N = 1e5+10;

//反复平方
LL qmi(int a,int b,int p){
    
    LL res=1;
    
    while(b){
        
        if(b&1) res=res*a%p;
        
        a=a*(LL)a%p;//每次都乘,相当于预处理
        
        b>>=1;
        
    }
    
    return res;
}

int main(){
    int n;
    cin>>n;
    
    while(n--){
        int a,b,p;
        scanf("%d%d%d",&a,&b,&p);
        
        printf("%lld\n",qmi(a,b,p));
    }
    
    return 0;
}

模板题2:

对任意正整数  N ,计算 XNmod233333 的值。

输入格式
共一行,两个整数 X 和 N。

输出格式
共一行,一个整数,表示 XNmod233333 的值。

数据范围
1≤X,N≤109
输入样例:
2 5
输出样例:
32

代码:
#include <iostream>

using namespace std;

long long qmi(int a,int b,int p){
    long long res=1;
    
    while(b){
        
        if(b&1) res=res*a%p;
        
        a=a*(long long)a%p;
        
        b>>=1;
    }
    
    return res;
}

int main(){
    int x,n;
    
    cin>>x>>n;
    
    cout<<qmi(x,n,233333)<<endl;
    
    return 0;
}

快速幂求逆元:

逆元的作用:

可以将除法问题转换成乘法问题。

求a/b余数的问题转换成求a*(b的逆元的问题),mod上一个m

思路:

1.逆元的性质:b的逆元*b 模上 m =1

2.费马定理:对于两个互质的数b,m,b的m-1次方模上m等于1

根据1,2两条信息得,b的逆元就是b的m-2次方(m是质数,m-2大于等于0)

所以求用快速幂求b的m-2次方mod m即可

例题:

给定 n 组 ai,pi,其中 pi 是质数,求 ai 模 pi 的乘法逆元,若逆元不存在则输出 impossible。

注意:请返回在 0∼p−1 之间的逆元。

乘法逆元的定义
若整数 b,m 互质,并且对于任意的整数 a,如果满足 b|a,则存在一个整数 x,使得 a/b≡a*x(modm),则称 x 为 b 的模 m 乘法逆元,记为 b−1(modm)。
b 存在乘法逆元的充要条件是 b 与模数 m 互质。当模数 m 为质数时,b的m−2次方即为 b 的乘法逆元。

输入格式
第一行包含整数 n。

接下来 n 行,每行包含一个数组 ai,pi,数据保证 pi 是质数。

输出格式
输出共 n 行,每组数据输出一个结果,每个结果占一行。

若 ai 模 pi 的乘法逆元存在,则输出一个整数,表示逆元,否则输出 impossible。

数据范围
1≤n≤105,
1≤ai,pi≤2∗109
输入样例:
3
4 3
8 5
6 3
输出样例:
1
2
impossible

代码:
//费马定理,快速幂
#include <iostream>
#include <algorithm>

using namespace std;

typedef long long LL;


LL qmi(int a, int b, int p)
{
    LL res=1;
    
    while(b){
        
        if(b&1) res=res*a%p;
        
        a=a*(LL)a%p;
        
        b>>=1;
    }
    
    return res;
}

//非法情况:因为规定了p是质数,所以如果a与p之间存在倍数关系,只能是p|a,因为p是质数,没有别的约数了。在这里,不存在逆元就只有a是p的倍数这种情况

int main()
{
    int n;
    scanf("%d", &n);
    while (n -- )
    {
        int a, p;
        scanf("%d%d", &a, &p);
        
        if (a % p == 0) puts("impossible");//当p|a时,两者不存在乘法逆元
        
        else printf("%lld\n", qmi(a, p - 2, p));//  
    }

    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

切勿踌躇不前

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值