【顶级理解】带你搞懂泰勒公式的前世今生!

目录

前言

一、前世(凭什么!)

二、今生

三、总结


前言

本着一直不理解泰勒公式那一大坨的态度去看了很多博主的讲解,略有所悟现总结如下,愿与君共勉。(术语不够专业但理解够用了)

关于泰勒公式:左边的一个函数怎么就等于右边的“一大坨”呢,明明都见过,但你把俩画上等于号这是凭什么?!令人匪夷所思!


开始讲之前,先思考两个问题:

  1. = 是什么意思?
  2. 在某一点等价~是什么意思?

即,等式两边的值一样。

即,在该点的函数值一样而且导数值一样。

一、前世(凭什么!)

1.什么样的两个函数才能说它两完全相等呢?

比如\boldsymbol{\mathbf{e^x}}和上面的另一条函数相等吗?

显然除了在零点的函数值以外,其他都不相等。

所以有的人会说两个函数在所有点的函数值都一样。这个说法很对,但显然不利于我们研究一个问题。

于是,我们退而求其次,只要求在某点的附近,即这个点的极小邻域内做到处处相等。有这个条件成立时,我们就说两个函数可以划上等号。

而且可以注意到一个问题,我们在描述相等的时候往往会带有“所有”,“都”,“全部”,“处处”等字眼,总之就是ALL。显然要想实现相等并不容易,他需要很高的准确度。

2.等价的含义

即,两个函数在该点的函数值一样而且导数值一样。

故有了下面的图,这时我们说他俩等价。两个曲线向下平移一个单位长度,也就得到了我们所熟知的\mathbf{\mathbf{e^x-1}}

但明显并不相等啊。。。(一个是直的,一个是弯的,估计泰勒看了也不好意思说相等)

所以我们也不能睁眼说瞎话。

所以问题就来了,既然都到这地步了,为什么还不相等!

于是!

观察上面两条曲线,可以发现除了0点的函数值和1阶导数相同以外,其他各不相同。

什么原因导致的呢?

显然是曲线的变化趋势不一样,e的变化趋势一直在改变的,而y是始终不变的。

也就是说,\boldsymbol{\mathbf{e^x}}在0点的所有阶导数都是1,而你如果想跟我划上等号,就必须保证高精度,显然y=x有点高攀了,他只做到1阶导数和\boldsymbol{\mathbf{e^x}}相同。

所以问题又来了:那么谁又影响着1阶导数呢?

于是传说的2阶导数出来了,以此类推,逐渐加大筹码,加大精度,我让你所有阶的导数都相等,不就能做到邻域内处处高精度等价了吗,不就能画上等号了吗?

二、今生

于是有了下面的推导:(至于为什么把\boldsymbol{\mathbf{g(x)}}设成幂函数多项式之和的形式应该问问泰勒,泰勒是先拿幂函数来做研究的)

设:  \boldsymbol{\mathbf{f(x)}},\mathbf{g(x)=a+bx+cx^2+dx^3+ex^4+......}

所以为使f(x)和g(x)在某点上划上等号,应做到以下两点:

1.在该点的函数值保证一样

2.在该点的所有阶导数保证一样

于是开始求导!干!(先在0点求导,即x0=0)

\mathbf{g'(0)=b*1}

\mathbf{g''(0)=c*2*1=c*2!}

\mathbf{g'''(0)=d*3*2*1=d*3!}

\mathbf{g''''(0)=e*4*3*2*1=e*4!}

……

Stop!

到这里应该发现点东西了,也就是说g(x)的n阶导数只和x的n阶有关

Why?

  1. 求导的过程可以把g(x)分为三类:

1.和所求导的阶数一样的项,也就是只有一项

2.比所求导的阶数还低的项,最后就是常数被导,所以叫它“导没”

3.比所求导的阶数还高的项,暴漏的还有x,所以叫它“代没”

\mathbf{f'(0)=g'(0)=b*1}

\mathbf{f''(0)=g''(0)=c*2!}

\mathbf{f'''(0)=g'''(0)=d*3!}

\mathbf{f''''(0)=g''''(0)=e*4!}

…….

于是:

\mathbf{a=f(0)}

\mathbf{b=f'(0)}

\mathbf{c=\frac{f''(0)}{2!}}

\mathbf{d=\frac{f'''(0)}{3!}}

\mathbf{e=\frac{f''''(0)}{4!}}

后面的省略号可以换成高阶无穷小

所以:

\mathbf{f(x)=f(0)+f'(x)x+\frac{f''(x)}{2!}x^2+\frac{f'''(x)}{3!}x^3+\frac{f''''(x)}{4!}x^4+o(x^n)}

但是只能找f(x)在0点的相等函数吗?显然不是

如果x0=1,则:

求导的过程中g(x)的三类有哪些发生变化了呢?

可以得知只有最后一类会受影响,因为导完之后暴露的还有x,为了让他“导没”应该:

\mathbf{g(x)=a+b(x-1)+c(x-1)^2+d(x-1)^3+e(x-1)^4+......}

所以实现由特殊到一般的推进:

若x=x0,则:

\mathbf{g(x)=a+b(x-x0)+c(x-x0)^2+d(x-x0)^3+e(x-x0)^4+......}

于是由皮亚诺进行收尾研究的伟大的泰勒公式降世:

\mathbf{f(x)=f(x0)+f'(x0)(x-x0)+\frac{f''(x0)}{2!}(x-x0)^2+\frac{f'''(x0)}{3!}(x-x0)^3+\frac{f''''(x0)}{4!}(x-x0)^4+...+\frac{f^n(x0)}{n!}(x-x0)^n+o((x-x0)^n)}

我们常在0点研究问题:(令x0=0)

于是伟大的带有皮亚诺余项的麦克劳林公式降世:(麦克劳林这事干的让我来也行啊.......)

\mathbf{f(x)=f(0)+f'(0)x+\frac{f''(0)}{2!}x^2+\frac{f'''(0)}{3!}x^3+\frac{f''''(0)}{4!}x^4+...+\frac{f^n(0)}{n!}x^n+o(x^n)}


三、总结

所谓的“那一大坨”其实就是高精度的等价无穷下罢了,也正因为如此,才有了我们在使用加减等价无穷小时候的判定条件(说白了就是精度不够)。

最后最后!!!点赞加收藏!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值