目录
前言
本着一直不理解泰勒公式那一大坨的态度去看了很多博主的讲解,略有所悟现总结如下,愿与君共勉。(术语不够专业但理解够用了)
关于泰勒公式:左边的一个函数怎么就等于右边的“一大坨”呢,明明都见过,但你把俩画上等于号这是凭什么?!令人匪夷所思!
开始讲之前,先思考两个问题:
- = 是什么意思?
- 在某一点等价~是什么意思?
即,等式两边的值一样。
即,在该点的函数值一样而且导数值一样。
一、前世(凭什么!)
比如和上面的另一条函数相等吗?
显然除了在零点的函数值以外,其他都不相等。
所以有的人会说两个函数在所有点的函数值都一样。这个说法很对,但显然不利于我们研究一个问题。
于是,我们退而求其次,只要求在某点的附近,即这个点的极小邻域内做到处处相等。有这个条件成立时,我们就说两个函数可以划上等号。
而且可以注意到一个问题,我们在描述相等的时候往往会带有“所有”,“都”,“全部”,“处处”等字眼,总之就是ALL。显然要想实现相等并不容易,他需要很高的准确度。
即,两个函数在该点的函数值一样而且导数值一样。
故有了下面的图,这时我们说他俩等价。两个曲线向下平移一个单位长度,也就得到了我们所熟知的。
但明显并不相等啊。。。(一个是直的,一个是弯的,估计泰勒看了也不好意思说相等)
所以我们也不能睁眼说瞎话。
所以问题就来了,既然都到这地步了,为什么还不相等!
于是!
观察上面两条曲线,可以发现除了0点的函数值和1阶导数相同以外,其他各不相同。
什么原因导致的呢?
显然是曲线的变化趋势不一样,e的变化趋势一直在改变的,而y是始终不变的。
也就是说,在0点的所有阶导数都是1,而你如果想跟我划上等号,就必须保证高精度,显然y=x有点高攀了,他只做到1阶导数和
相同。
所以问题又来了:那么谁又影响着1阶导数呢?
于是传说的2阶导数出来了,以此类推,逐渐加大筹码,加大精度,我让你所有阶的导数都相等,不就能做到邻域内处处高精度等价了吗,不就能画上等号了吗?
二、今生
于是有了下面的推导:(至于为什么把
设成幂函数多项式之和的形式应该问问泰勒,泰勒是先拿幂函数来做研究的)
设:
所以为使f(x)和g(x)在某点上划上等号,应做到以下两点:
1.在该点的函数值保证一样
2.在该点的所有阶导数保证一样
于是开始求导!干!(先在0点求导,即x0=0)
……
Stop!
到这里应该发现点东西了,也就是说g(x)的n阶导数只和x的n阶有关
Why?
- 求导的过程可以把g(x)分为三类:
1.和所求导的阶数一样的项,也就是只有一项
2.比所求导的阶数还低的项,最后就是常数被导,所以叫它“导没”
3.比所求导的阶数还高的项,暴漏的还有x,所以叫它“代没”
…….
于是:
后面的省略号可以换成高阶无穷小
所以:
但是只能找f(x)在0点的相等函数吗?显然不是
如果x0=1,则:
求导的过程中g(x)的三类有哪些发生变化了呢?
可以得知只有最后一类会受影响,因为导完之后暴露的还有x,为了让他“导没”,应该:
所以实现由特殊到一般的推进:
若x=x0,则:
于是由皮亚诺进行收尾研究的伟大的泰勒公式降世:
我们常在0点研究问题:(令x0=0)
于是伟大的带有皮亚诺余项的麦克劳林公式降世:(麦克劳林这事干的让我来也行啊.......)
三、总结
所谓的“那一大坨”其实就是高精度的等价无穷下罢了,也正因为如此,才有了我们在使用加减等价无穷小时候的判定条件(说白了就是精度不够)。
最后最后!!!点赞加收藏!