泰勒公式推导过程_(k从1到n)∑k^m(其中m为正实常数)的近似公式(或者说无穷展开式)...

一、导言——

高中我们学过等差数列求和:

当然,这也可以写为

或者是高中在讲定积分时用到,但没有深入讲解的公式:

这同样可以写为

当然,幂为分数也是可以的,不过分数/正实数维展开就会像泰勒展开一样有余项

总之,将其统一起来,我们有以公式(1.1d),这也是全文的核心内容

[1]

事实上,这一性质与函数的泰勒展开式类似的,m为整数时是有限项m为非整数的正实数时则是一个无穷幂级数求和

至于详细的系数如何,请见下面第二部分——


二、结论先行

虽然系数的具体推导过程的思路是清晰的,但细节时琐碎的。为了不吓跑读者,此处第二部分结论先行

例如令

,有:

如果你真的要像泰勒级数一样写出无穷项,也不是不可以,不过其实前面的展开已经够用了,所以这个通项其实意义不大

[2] [3]

其中

……

更多项请使用MATLAB计算后面会附代码):

7029d71eae6a53996112ee4e40f2334d.png
可以看出,此处偶数(Ck的k为奇数)项总是0,然而我懒得去验证是为什么了

这里因为MATLAB的分数精度问题,后面带星号的数太小无法显示事实上

e74d0902efb2088e3c1c20c418cbad16.png

可以整理出大致有如下值(笔者没有看出规律):

观察到后面的项实在太小了,当n充分大时,取前3项已经绰绰有余了

当然,如果你真的是个好奇宝宝,一定想要知道

的通项的话,也不是不可以(虽然没有什么意义,理论分析和实际计算都没什么用):

当然,比起通项公式(o(n!)谁顶得住啊),对我们更有用还是递推公式(用脚写也最多o(n^2)):

好了,结论已经说完了。第三部分将给出结论的相对更详细的一部分(直接丢出来怕吓退萌新)。第四部分则会给出具体的推导过程


三、再详细一丢丢(更详细的请见第四部分)

嗯,我想,如果这是直接进入详细证明过程,读者恐怕还是一头雾水。那我就在此之前再说说

的思路来源。

前面说了:

再或者说,如果要写出(1.3a)的任意项的话:

如果将(1.3b)写成无穷求和的形式,即:

其中(1.3c)的系数是依赖于m的常数。

为了去掉(1.2c)的系数里的m

令系数

[4]

或者将(1.3d)写成连乘形式:

[5]

其中可以证明

为不依赖于m的常数,递推关系见前面公式 (1.2d):,或者将 (1.2d)写成 无穷求和形式:

的通项见前面公式 (1.2c)

四、让我们来证明它吧

相信基本到了这里,该劝退的都已经劝退完了。那么就让我们直奔主题,消除证明的最好办法就是面对证明,加油,奥利给(以上删除)。

1、第一步:展开——

首先,仿照泰勒公式的思路启发我们将其进行类似地展开:

那么错位相减:

[6]

除到左面去:

考虑到泰勒公式

[7]

2、第二步:系数配平,得到

递推关系——

通过一系列复杂的化简计算可以得到:

考虑到左右两边

的系数相同,利用
系数配平可得:

这就构成了一个递推关系,我们可以用它求得其前三项:

3、第三步:分离出

中的
,得到
递推关系

因为m比较麻烦,我们希望处理掉它。通过观察前3项,大胆猜测

可以写成
的形式。

其中

是与
无关的常数。

其实猜出来过后,后面的步骤就很容易了。我们用数学归纳法去验证它是不困难的——

考虑到公式(1.4a)递推关系:

成立

代入可知:

整理为:

数学归纳法(p-1)->p成立,故得证

上面不仅证明了

可以拆成这个样子,其实还得到了
的递推关系

4、第四步:求解

的行列式表达形式

事实上,做到这里本来就已经结束了。但是

是由
递推式(1.4c)定义的,我们想要尝试将其写成一个显式的解(虽然没有成功化简,所以没有什么意义)。

考虑到公式(1.4c)可以变形为:

将其写成

阶矩阵的形式,并且用Crammer法则展开,求解
即为所求。
这里过程懒得打了,最后化简答案如下——

至于这个矩阵能否进一步化简,经过本人一晚上的努力,以及向大佬们的咨询,感觉是难以进一步化简的。(吐槽:所以这个行列式不就是什么卵用都没有吗)(以上划掉)


五、相关代码

以下提供两种计算

MATLAB代码——

1、用递推式

的MATLAB代码
%n对应C_{n-1},这是matlab没有C(0)这个说法QAQ

2、用行列式计算

的MATLAB代码

这个只是提供行列式的思路,以及用来验证行列式的正确性。真用这个编程怕不是吃饱了撑的,这个复杂度可是o(n!)

%n对应C_{n-1},对应n-1阶矩阵,这是matlab没有C(0)这个说法QAQ

参考

  1. ^不要问我为什么是o(1/n^2)而不是o(1/n^3),因为可以算出1/n^3项的系数为0。更一般地,通过MATLAB暴力计算前20项,发现其后的奇数项都为0。具体原因我也不清楚
  2. ^容易注意到:那一坨连乘在p=0和p=1时这个式子是没有意义的,但是如果我们将其延拓,可以认为A2=m,A1=1,A0=1/(m+1)
  3. ^如果想要追求数学的严谨性,可以把分子分母同时乘除(m+2)(m+1),不过这样写会很迷惑。如果领会了这种方法的本质,也可直接像上面连乘形式的暴力延拓掉。心中无码,自然高清。嗯(笑
  4. ^之所以把分子分母同时乘除(m+2)(m+1)、写得这么奇怪,是为了防止p=1和p=2时该式子没有意义。当然,如果领会了这种方法的本质,也可直接像下面连乘形式的暴力延拓掉。心中无码,自然高清。嗯(笑×2
  5. ^容易注意到:那一坨连乘在p=0和p=1时这个式子是没有意义的,但是如果我们将其延拓,可以认为A2=m,A1=1,A0=1/(m+1)(其实在上面2处我已经说过了,之所以重复一遍怕有读者没看上面的直接跳过了,到这里就迷惑了
  6. ^此处o(n^{m+1-p})变成o(n^{m-p})这一点可以用拉格朗日中值定理进行证明,也可以用其他方法,例如泰勒公式等
  7. ^显然,α>0时,该泰勒公式收敛域是[-1,1],而1/n总是一个绝对值小于等于1的数
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值