堆,堆排序

文章介绍了堆的概念,包括最大堆和最小堆的性质,以及堆的两种调整算法——向下调整和向上调整。堆的插入和删除操作通过调整算法实现,同时提供了完整的C语言代码实现。此外,文章还提到了堆在堆排序和解决TOP-K问题中的应用。
摘要由CSDN通过智能技术生成

一、堆

     将根节点最大的堆叫做最大堆或大根堆,根节点最小的堆叫做最小堆或小根堆。
     堆的性质:(1)堆中某个节点的值总是不大于或不小于其父节点的值;
                       (2) 堆总是一棵完全二叉树。
堆的实现:
(1) 堆向下调整算法
        现在我们给出一个数组,逻辑上看做一颗完全二叉树。我们通过从根节点开始的向下调整算法可以把它调整 成一个小堆。向下调整算法有一个前提:左右子树必须是一个堆,才能调整。
int array [] = { 27 , 15 , 19 , 18 , 28 , 34 , 65 , 49 , 25 , 37 };

 

 从父节点以此向下进行调整:直到调整完成。

void AdjustDown(HPDataType* a, int n, int parent)
{
	int child = parent * 2 + 1;
	while (child < n)
	{
		if (child + 1 < n && a[child + 1] > a[child])
			child++;
		if (a[child] > a[parent])
		{
			swap(&a[child], &a[parent]);
			parent = child;
			child = parent * 2 + 1;
		}
		else
		{
			break;
		}
	}
}

(2)向上调整 

同向下调整一样,但向上调整是从最后一个叶子结点,向上进行调整,直至根节点。

void  AdjustUp(HPDataType* a,int child)
{
	int parent = (child - 1) / 2;
	while (child > 0)
	{
		if (a[child] > a[parent])
		{
			swap(&a[child], &a[parent]);
			child = parent;
			parent = (child - 1) / 2;
		}
		else
		{
			break;
		}
	}
}

(3)堆的插入 

先插入一个数到 数组的尾上,再进行向上调整算法,直到满足堆。
(4)堆的删除

     删除堆是删除堆顶的数据,将堆顶的数据根最后一个数据一换,然后删除数组最后一个数据,再进行向下调 整算法。

堆的代码实现

《1》头文件部分:

#pragma once
#include<stdio.h>
#include<assert.h>
#include<stdlib.h>
#include<stdbool.h>
#include<string.h>

//以数组的方式构建一个堆
typedef int HPDataType;
typedef struct Heap
{
	HPDataType* a;
	int size;
	int capacity;
}HP;
void swap(HPDataType* a1, HPDataType* a2);//交换
void AdjustDown(HPDataType* a, int n, int parent); //建堆 向下调整
void  AdjustUp(HPDataType* a,int child);//向上调整
void HeapPrint(HP* hp);//打印
void HeapInit(HP* hp);//初始化
void HeapDestroy(HP* hp);//销毁
void HeapGreate(HP* hp, HPDataType* a, int n); //一次性创建n个大小的堆,以数组的方式进行创建
void HeapPush(HP* hp, HPDataType x);
void HeapPop(HP* hp);
HPDataType HeapTop(HP* hp);
int HeapSize(HP* hp);
bool HeapEmpty(HP* hp);

《2》实现部分 

#include"Heap.h"
void swap(HPDataType* a1, HPDataType* a2)
{
	HPDataType tmp = *a1;
	*a1 = *a2;
	*a2 = tmp;
}
void AdjustDown(HPDataType* a, int n, int parent)
{
	int child = parent * 2 + 1;
	while (child < n)
	{
		if (child + 1 < n && a[child + 1] > a[child])
			child++;
		if (a[child] > a[parent])
		{
			swap(&a[child], &a[parent]);
			parent = child;
			child = parent * 2 + 1;
		}
		else
		{
			break;
		}
	}
}
void  AdjustUp(HPDataType* a,int child)
{
	int parent = (child - 1) / 2;
	while (child > 0)
	{
		if (a[child] > a[parent])
		{
			swap(&a[child], &a[parent]);
			child = parent;
			parent = (child - 1) / 2;
		}
		else
		{
			break;
		}
	}
}
void HeapPrint(HP* hp)//打印
{
	assert(hp);
	for (int i = 0;i < hp->size;i++)
	{
		printf("%d ", hp->a[i]);
	}
	printf("\n");
}
void HeapInit(HP* hp)//初始化
{
	assert(hp);
	hp->a = NULL;
	hp->size = hp->capacity = 0;
}
void HeapDestroy(HP* hp)//销毁
{
	assert(hp);
	free(hp->a);
	hp->a = NULL;
	hp->size = hp->capacity = 0;
}

void HeapGreate(HP* hp, HPDataType* a, int n) //一次性创建n个大小的堆,每个的值为x
{
	assert(hp);
	hp->a = (HPDataType*)malloc(sizeof(HPDataType) * n);
	if (hp->a == NULL)
	{
		perror("malloc fail");
		exit(-1);
	}
	memcpy(hp->a, a, sizeof(HPDataType) * n);//拷贝数据
	hp->size = hp->capacity = n;
	//建堆算法
	for (int i = (n - 1 - 1) / 2;i >= 0;i--)
	{
		AdjustDown(hp->a, n, i);
	}
}
void HeapPush(HP* hp, HPDataType x)
{
	assert(hp);
	if (hp->size == hp->capacity)
	{
		int newcapacity = hp->capacity == 0 ? 4 : hp->capacity * 2;
		HPDataType* tmp = (HPDataType*)realloc(hp->a, newcapacity*sizeof(HPDataType));
		if (tmp == NULL)
		{
			perror("realloc fail");
			exit(-1);
		}
		hp->a = tmp;
		hp->capacity = newcapacity;
	}
	hp->a[hp->size] = x;
	hp->size++;
	AdjustUp(hp->a, hp->size - 1);

}
void HeapPop(HP* hp)
{
	assert(hp);
	assert(hp->size > 0);
	swap(&hp->a[0], &hp->a[hp->size - 1]);

	hp->size--;
	AdjustDown(hp->a, hp->size, 0);
}
HPDataType HeapTop(HP* hp)
{
	assert(hp);
	assert(hp->size > 0);
	return hp->a[0];
}
int HeapSize(HP* hp)
{
	assert(hp);
	return hp->size;
}
bool HeapEmpty(HP* hp)
{
	assert(hp);
	return hp->size == 0;
}

堆排序:

对于,需要一个升序时,建一个大堆,依次将堆顶的元素放在最后,整个的大小减一,依次循环。

需要降序时,相反即可。

void HeapSort(int* a, int sz)
{
	//堆排序,分为向下建堆和向上建堆
	向下建堆 时间复杂度0(N)
	//for (int i = (sz - 1 - 1) / 2;i >= 0;i--)
	//{
	//	AdjustDown(a, sz, i);
	//}
	//向上建堆 时间复杂度为 O(NlogN)
	for (int i = 1;i < sz;i++)
	{
		AdjustUp(a, i);
	}
	//利用堆排序,建一个升序
	int end = sz - 1;
	while (end)
	{
		swap(&a[0], &a[end]);
		AdjustDown(a, end, 0);
		end--;
	}
}
TOP-K问题
《1》 用数据集合中前 K 个元素来建堆
       前 k 个最大的元素,则建小堆 ;前k 个最小的元素,则建大堆
《2》用剩余的 N-K 个元素依次与堆顶元素来比较,不满足则替换堆顶元素
       将剩余 N-K 个元素依次与堆顶元素比完之后,堆中剩余的 K 个元素就是所求的前 K 个最小或者最大的元素。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

山野村夫.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值