2024第十五届蓝桥杯省赛C++A组程序设计题解

 个人主页:

想转码的电筒人

专栏:

蓝桥杯

目录

试题C:训练士兵

试题D:团建

​编辑 ​编辑

 试题E:   成绩统计

试题F:因数计数

试题G:零食采购


ps:没有答案,考场上的代码,不一定对,大佬们轻喷,可以提供点更好的思路~

试题C:训练士兵

9ea249fe760341b7986d75dc43a90f1a.png

2c45d7cf7aac4bcf9fdb18cb4f282fca.png

解题思路

对于每次训练,需要考虑采用士兵单独训练还是组团训练的方式,故每次训练将所需训练次数大于0的士兵花费进行求和,与组团训练进行比较,以此判断是否要采用组团训练的方式

代码

#include<bits/stdc++.h>
#include<unordered_map>
#include<unordered_set>
#define ll long long
using namespace std;
int N, S;
int main() {
	cin >> N >> S;
	int n = N;
	vector<int> p;		//成本
	vector<int> c;		//次数
	while (n--) {
		int pi, ci;
		cin >> pi >> ci;
		p.push_back(pi);
		c.push_back(ci);
	}
	int sum = 0;
	while (1) {
		int flag = 1;
		int consume = 0;
		for (int i = 0; i < c.size(); i++) {
			if (c[i] > 0)
			{
				consume += p[i];
				c[i]--;
				flag = 0;
			}
		}
		sum += min(consume, S);
		if (flag) break;
	}
	cout << sum;
	return 0;
}

试题D:团建

c00ca8135f57425091426e5fd5895438.png 9c8dc68914f44edd99da188cf1a9b981.png

解题思路

对于该题,考虑层序遍历,先将树的孩子用vector容器进行存储,因题目说明每棵树不会有节点的值重复,故进行层序遍历,判断树的每层是否有相同结点值,以此判断最长公共前缀

代码

#include<bits/stdc++.h>
#include<unordered_map>
#include<unordered_set>
#define ll long long
using namespace std;
const int T = 200000;
vector<vector<int>> tree1(T);
vector<vector<int>> tree2(T);
vector<int> nums1(T);
vector<int> nums2(T);
int N, M;
int get() {
	int sum = 0;	
	int t1 = 1, t2 = 1;
	if (nums1[1] == nums2[1]) sum++;
	else return 0;
	while (1) {
		int i, j;
		int flag = 1;
		if (tree1[t1].size() == 0 || tree2[t2].size() == 0) break;
		for (i = 0; i < tree1[t1].size(); i++) {
			for (j = 0; j < tree2[t2].size(); j++) {
				if (nums1[tree1[t1][i]] == nums2[tree2[t2][j]])   //寻找公共前缀
				{
					flag = 0;
					t1 = tree1[t1][i];
					t2 = tree2[t2][j];                            //选取下一层的父节点
					sum++;
					break;
				}
			}
		}
		if (flag) break;
	}
	return sum;
}
int main() {
	cin >> N >> M;
	int n = N, m = M;
	int temp;
	while (n--) {
		cin >> temp;
		nums1[N - n] = temp;
	}
	while (m--) {
		cin >> temp;
		nums2[M - m] = temp;
	}
	n = N - 1; m = M - 1;
	int t1, t2;
	while (n--) {
		cin >> t1 >> t2;
		tree1[min(t1, t2)].push_back(max(t1, t2));
	}
	while (m--) {
		cin >> t1 >> t2;
		tree2[min(t1, t2)].push_back(max(t1, t2));       //存储每个节点的孩子
	}
	cout << get();
	return 0;
}

 试题E:   成绩统计

284b961ff41046bc9a955037c1f4d0e1.png

解题思路

对于该题,考虑动态规划解法,先取前k个人的成绩计算其方差,并将成绩记录在数组中,记录当前均值,设小蓝已检查前i-1个人的成绩,若方差依然大于T,找出离均值最远的一个成绩,若第i个人的成绩距离当前均值更近,则剔除离均值较远的成绩,使得方差变小,若遍历完整个数组均找不到更小的方差,返回-1

代码

#include<bits/stdc++.h>
#include<unordered_map>
#include<unordered_set>
#define ll long long
using namespace std;
vector<double> t;
vector<double> nums;
int N, k, T;
bool calculate0() {            //判断方差是否小于指定值
	double e;
	double sum = 0;
	for (auto num : t) {
		sum += num;
	}
	e = sum / k;
	double val = 0;
	for (auto num : t) {
		val += (num - e) * (num - e);
	}
	val /= k;
	if (val < T) return true;
	else return false;
}
int main() {
	cin >> N >> k >> T;
	int n = N;
	while (n--) {
		double temp;
		cin >> temp;
		nums.push_back(temp);
	}
	if (N < k) { cout << -1; return 0; }
	double mean = 0;
	for (int i = 0; i < k; i++) {
		t.push_back(nums[i]);
		mean += nums[i];
	}
	mean /= k;
	if (calculate0()) { cout << k; return 0; }
	for (int length = k; length < nums.size(); length++) {
		double sub = 0;
		int x = -1;
		for (int i = 0; i < t.size(); i++) {
			if (abs(t[i] - mean) > sub) {
				sub = abs(t[i] - mean);
				x = i;
			}
		}
		if (x != -1 && sub > abs(nums[length] - mean))            //判断是否更接近均值
			t[x] = nums[length];
		if (calculate0()) { cout << length + 1; return 0; }
	}
	cout << -1;
	return 0;
}

试题F:因数计数

24b2e93b5c6f4aad839b7b6e50448e93.png

解题思路

循环遍历数组,判断因数找出所有的有序二元组对,并用集合进行存储,遍历集合,以i,j,k,l互不相等为条件,生成有序四元组,计算四元组个数

代码

#include<bits/stdc++.h>
#include<unordered_map>
#include<unordered_set>
#define ll long long
using namespace std;
set<pair<int, int>> s;
int main() {
	int N;
	cin >> N;
	vector<int> nums;
	while (N--) {
		int temp;
		cin >> temp;
		nums.push_back(temp);
	}
	for (int i = 0; i < nums.size(); i++) {
		for (int j = i + 1; j < nums.size(); j++) {
			if (nums[i] % nums[j] == 0)
				s.insert({ j + 1,i + 1 });
			if(nums[j] % nums[i] == 0)
				s.insert({ i + 1,j + 1 });			//判断ai和aj是否为对方的因数
		}
	}
	int sum = 0;
	for (auto t1 : s) {
		for (auto t2 : s) {
			if (t1.first != t2.first && t1.first != t2.second && t1.second != t2.first && t1.second != t2.second)
				sum++;
		}
	}
	cout << sum;
	return 0;
}

试题G:零食采购

56f0c99b98044f7f90a9d01aadb5bee8.png

99c1cd5c9a0b42c9aa203f0778d00399.png

解题思路

该题是一道图论问题,目的是寻找最短路径下能采购到的零食总数,故先利用矩阵生成无向连通图,再采用深度优先遍历,存储两点之间的所有路径,再判断哪条最短路径,在最短路径下模拟零食采购,用集合存储零食种类,集合大小即为所求零食种类数

代码

#include<bits/stdc++.h>
#include<unordered_map>
#include<unordered_set>
#define ll long long
using namespace std;
int N, q;
vector<int> type;
vector<int> temp;
void dfs(int b, int e,vector<vector<int>>& line,vector<vector<int>> matrix,int length) {
	if (b == e) { line.push_back(temp); return; }
	if (length > N) return;
	for (int i = 0; i < matrix[b].size();i++) {
		if (matrix[b][i] == 1) {
			temp.push_back(i);						//将当前节点加入路径中
			dfs(i, e, line, matrix,length+1);		
			temp.pop_back();
		}
	}
	return;
}
int main() {
	cin >> N >> q;
	vector<int> t(N, 0);
	vector<vector<int>> matrix(N, t);
	int n = N;
	while (n--) {
		int temp;
		cin >> temp;
		type.push_back(temp);
	}
	n = N - 1;
	while (n--) {
		int i, j;
		cin >> i >> j;
		matrix[i - 1][j - 1] = 1;
		matrix[j - 1][i - 1] = 1;				//生成无向连通图
	}
	while (q--) {
		int begin0, end0;
		cin >> begin0 >> end0;
		vector<vector<int>> line;
		dfs(begin0 - 1, end0 - 1, line,matrix,0);
		int minlength = line[0].size();
		int f = 0;
		for (int i = 0; i < line.size(); i++)
		{
			if (line[i].size() < minlength) {
				f = i;
				minlength = line[i].size();			//寻找最短路径
			}
		}
		set<int> s;
		s.insert(type[begin0 - 1]);
		for (auto x : line[f]) {
			s.insert(type[x]);                     //模拟零食采购
		}
		cout << s.size();
	}
	return 0;
}

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值