图:G=(V,E)
V:顶点(数据元素)的又穷非空集合;
E:边的有穷集合。
无向图:每条边都是无方向的G2
有向图: 每条边都是有方向的G1
完全图:任意两个点都有一条边相连
假设有n个顶点:
无向完全图中有n*(n-1)/2条边{Cn2}
有向完全图中有n*(n-1)条边(2*Cn2)
稀疏图:有很少的边或弧(x<nlogn)x为边的数目,n为顶点的数目 。
稠密图:有较多的边或弧的图。
网:边/弧带权的图
邻接:有边/弧相连的两个顶点之间的关系
存在(vi,vj),则成vi和vj互为邻接点;(无向图用())
存在<vi,vj>,则称vi邻接到vj,vj邻接于vi(有向图用<>有先后关系,有序的)
关联(依附):边/弧于=与顶点之间的关系
存在<vi,vj>/(vi,vj),则称该边/弧关联与vi和vj
顶点的度:与该顶点相关联的边的数目,记为TD(v)
在有向图中,顶点的度等于该顶点的入度与出度之和。
顶点v的入度是以v为终点的有向边的条数,基座ID(v)
顶点v的出度是以v为始点的有向边的条数,记作OD(v)
TD=ID+OD
例子引入:
路径:接续的边构成的顶点序列。(若干条相连的边构成的路径)
路径的长度:路径上边或弧的数目/权值之和。
eg:不带权的路径
带权的路径:
回路(环):第一个顶点和最后一个顶点相同的路径。
简单路径:除起点和终点可以相同外,其余顶点均不相同的路径。
简单回路:除路径的起点和终点相同,其余顶点均不相同的路径。
权与网:
子图:
连通分量:
将非连通图可分成多个连通分量,连通分量都为极大连通子图
强连通分量:
有向图的极大连通子图
极小连通子图: 该子图是G的连通子图,在该子图中删除任何一条边子图不再连通
生成树:包含无向图G所有顶点的极小连通子图。
生成森林:对非连通图,由各个连通分量的生成树的集合。