Trie字符串统计(算法题)

在这里插入图片描述

#include <bits/stdc++.h>
using namespace std;

const int N = 100010;  // 预设Trie树的最大节点数量

// son数组:第一维表示父节点编号,第二维表示字符(0-25对应a-z),值存储子节点编号
// cnt数组:记录以某个节点为结尾的字符串数量
// idx:当前可用的节点编号(从1开始分配)
int son[N][26], cnt[N], idx;

// 插入字符串到Trie树
void insert(char str[])
{
    int p = 0;  // 从根节点(0号节点)开始遍历
    for(int i = 0; str[i]; i++)  // 遍历字符串每个字符
    {
        int u = str[i] - 'a';  // 将字符转换为0-25的数字
        
        /* 模拟示例:插入"abc"
           1. 处理a(u=0): 检查根节点0的0号子节点是否存在
           2. 若不存在则创建新节点(假设idx=1),p移动到1
           3. 处理b(u=1): 检查节点1的1号子节点是否存在
           4. 创建新节点(idx=2),p移动到2
           5. 处理c(u=2): 检查节点2的2号子节点是否存在
           6. 创建新节点(idx=3),p移动到3 */
        if(!son[p][u])          // 如果当前字符对应的子节点不存在
            son[p][u] = ++idx;  // 创建新节点,分配递增的节点编号
        p = son[p][u];          // 移动到子节点
    }
    cnt[p]++;  // 在字符串结尾节点处增加计数
    // 示例:插入完成后,cnt[3]会加1,表示"abc"出现一次
}

// 查询字符串出现次数
int query(char str[])
{
    int p = 0;
    for(int i = 0; str[i]; i++)
    {
        int u = str[i] - 'a';
        
        /* 模拟示例:查询"ab"
           1. 处理a(u=0): 检查根节点0的0号子节点存在(节点1)
           2. p移动到1
           3. 处理b(u=1): 检查节点1的1号子节点存在(节点2)
           4. p移动到2
           循环结束,返回cnt[2]的值(假设之前只插入过"abc",此处返回0) */
        if(!son[p][u])      // 如果路径不存在
            return 0;       // 直接返回0
        p = son[p][u];     // 沿路径向下移动
    }
    return cnt[p];  // 返回结尾节点的计数值
}

int main()
{
    int n;
    cin >> n;
    while(n--)
    {
        char op[2];
        char str[N];
        cin >> op >> str;
        
        if(op[0] == 'I') 
        {
            insert(str);
            /* 示例操作日志:
               Insert "apple":
               - 创建路径0->1(a)->2(p)->3(p)->4(l)->5(e)
               - cnt[5] = 1 */
        }
        else 
        {
            cout << query(str) << endl;
            /* 示例查询:
               Query "app":
               - 路径存在:0->1(a)->2(p)->3(p)
               - 返回cnt[3]的值(若只插入过"apple",此处返回0) */
        }
    }
    return 0;
}

/*
数据结构可视化示例(插入"abc", "abd", "ab"后):
根节点0
└─a(0) → 节点1
    └─b(1) → 节点2
        ├─c(2) → 节点3 (cnt=1)
        └─d(3) → 节点4 (cnt=1)
    cnt[2] = 1(对应"ab")

查询流程说明:
1. 查询"ab":到达节点2,返回cnt[2]=1
2. 查询"abc":到达节点3,返回cnt[3]=1
3. 查询"abe":在查找e(u=4)时路径中断,返回0
*/

本篇参考acwing算法基础课。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值