目录
现在大家基本都很了解self-attention(自注意力机制),对于注意力以及软注意力和硬注意力(Soft&Hard Attention)知之甚少,网上的视频解释和图像解释也比较少。这里作者根据一篇博客的理解解释一下相关概念,详情可见原文。“Soft & hard attention” (jhui.github.io)https://jhui.github.io/2017/03/15/Soft-and-hard-attention/
注意力机制(attention)
LSTM 模型和注意力模型之间的主要区别在于,“注意力”关注特定区域或对象,而不是平等地对待整个图像。
这里图中的h&X作为注意力机制的输入,Z作为注意力机制的输出。
软注意力机制(Soft Attention)
图中C作为h输入进attention,与每个X进行计算得出对应的s
s经过softmax层后分别与各自的X相乘并累加得到Z,相当于是计算x的加权平均值
硬注意力机制(Soft Attention)
在硬注意力机制中,Sample层前面的操作与软注意力机制的操作一致
Sample层
与软注意力机制不同的是,sample层不取加权平均值,而是把softmax计算所得的各个a作为样本率,选取概率最大的输入样本Xi作为Z。