软注意力和硬注意力的相关概念与图例

目录

 注意力机制(attention)

 软注意力机制(Soft Attention)

 硬注意力机制(Soft Attention) 

Sample层


                现在大家基本都很了解self-attention(自注意力机制),对于注意力以及软注意力和硬注意力(Soft&Hard Attention)知之甚少,网上的视频解释和图像解释也比较少。这里作者根据一篇博客的理解解释一下相关概念,详情可见原文。“Soft & hard attention” (jhui.github.io)icon-default.png?t=N7T8https://jhui.github.io/2017/03/15/Soft-and-hard-attention/

 注意力机制(attention)

        LSTM 模型和注意力模型之间的主要区别在于,“注意力”关注特定区域或对象,而不是平等地对待整个图像。

                        这里图中的h&X作为注意力机制的输入,Z作为注意力机制的输出。

 软注意力机制(Soft Attention)

        图中C作为h输入进attention,与每个X进行计算得出对应的s

         s经过softmax层后分别与各自的X相乘并累加得到Z,相当于是计算x的加权平均值

                         

 硬注意力机制(Soft Attention) 

在硬注意力机制中,Sample层前面的操作与软注意力机制的操作一致

Sample层

        与软注意力机制不同的是,sample层不取加权平均值,而是把softmax计算所得的各个a作为样本率,选取概率最大的输入样本Xi作为Z。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值