RINCE ------- 对比损失(InfoNCE)升级版

一. 概述

1. RINCE出处

来源于文章:Robust Contrastive Learning against Noisy Views

2201.04309.pdf (arxiv.org)icon-default.png?t=N7T8https://arxiv.org/pdf/2201.04309.pdf

2. 摘要

        对比学习依赖于一个假设,即正对包含相关视图,例如,图像的补丁或视频的多模态信号,它们共享有关实例的某些基础信息。但是,如果这个假设被违反呢?文献表明,对比学习在存在嘈杂视图的情况下会产生次优表征,例如,没有明显共享信息的假阳性对。在这项工作中,我们提出了一种新的对比损失函数,该函数对嘈杂的视图具有鲁棒性。我们通过显示与噪声二元分类的鲁棒对称损失的联系,以及通过基于Wasserstein距离测量的互信息最大化建立新的对比界,提供了严格的理论论证。拟议的损失完全与模态无关,并且是 InfoNCE 损失的简单替代品,这使得它很容易应用于现有的对比框架。我们表明,我们的方法在图像、视频和图形对比学习基准方面提供了持续的改进,这些基准测试表现出各种真实世界的噪声模式。

二. 损失函数

1. 基础损失函数InfoNCE

        参数s为正负样本的相似度(分数),当正样本之间相似度大,负样本之间相似度小时,损失函数趋于0,反之损失函数较大。

        参数t会影响模型输出的概率分布,当t值变大时,原来logits分布里的数值都变小,导致logits分布变得更加平滑,t的大小决定了模型对困难样本的关注程度,越小的温度系数越关注于将本样本行业最相似的样本分开

        (因为logits分布变得平滑导致负样本的相似度变大,损失的惩罚变大)

 2. 升级版对比损失函数RINCE

        参数s和InfoNCE相同,都是通过计算正负样本特征向量之间的余弦相似度并除以温度参数t所获得。 

        参数q和\lambda都在(0,1]。当q=1时RINCE完全满足对称性,此时该损失对噪声具有鲁棒性。正样本对的分数被放大,更加重视分数高(相似度高)的正样本对。换句话说,模型会更倾向于将分数高(相似度高)的正样本对分类正确,而不是倾向于将假阳性(并不相似的正样本)样本对分类正确。这样可以减少对无关样本的误判。这也时该模型的主要目的之一。

        当参数q趋近于0时,RINCE 渐近等同于 InfoNCE,更加重视分数低(相似度低)的正样本对。

  • 40
    点赞
  • 39
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值