使用ENVI软件进行遥感图像辐射校正

一、实验任务

(1)典型地物光谱分析;

(2)辐射定标;

(3)大气校正。

二、实验原理

(1)典型地物光谱分析原理

不同的地物具有独特的光谱反射和吸收特征。在遥感图像中,通过分析典型地物(如植被、水体、土壤等)在不同波段的光谱响应,可以识别地物类型并获取相关信息。这些光谱特征是地物的固有属性,基于此能够对遥感图像进行深入解读,为后续处理提供依据。

(2)辐射定标原理

传感器接收到的辐射能量与地物实际辐射能量之间存在定量关系。辐射定标就是建立这种关系的过程,通过确定传感器的增益和偏移量等参数,将图像的数字量化值(DN值)转换为辐射亮度值或者反射率值等具有物理意义的量,使得图像能够真实反映地物的辐射特性。

辐射定标包括相对辐射定标和绝对辐射定标两种类型:

相对辐射定标是为了校正传感器探测元件之间的不均匀性,而相对辐射定标是为了将无量纲、没有实际物理意义的DN值转化为具有实际物理意义的大气顶层辐射亮度值或反射率。绝对辐射定标一般在相对辐射定标之后进行,一般情况下用户用户只需要进行绝对辐射定标。

ENVI提供三种辐射定标的方法(Apply Gain and Offset工具,Band Math工具和Radiometric Calibration工具),三种方法的原理相同,区别在于:

①Apply Gain and Offset工具可以手动输入偏移量和增益量,已经封装辐射定标公式,可交互输入各波段的gain和offset值;

②Band Math工具需要对各波段分别输入公式;

③Radiometric Calibration工具已经封装辐射定标公式,要求头文件中必须有各波段的gain和offset值,可输出为FLAASH大气校正所需格式数据,结果可以直接用于FLAASH大气校正。

(3)大气校正原理

大大气中的气体、气溶胶和云层会吸收和散射太阳辐射,导致遥感图像的光谱失真。气校正旨在消除大气对遥感图像的影响,以恢复地物的真实辐射特性。大气校正通过模拟大气对辐射传输的影响,并应用相应的数学模型(如6S、MODTRAN等)来校正这些影响,从而得到更加准确的地表反射率数据。

三、实验数据与软件

(1)实验数据:LandsatTM_JasperRidge_hrf.fst

(2)软件:Envi 5.6

四、实验方法与步骤

1.读取数据

1)【File】→【Open As】→【Optical sensors】→【Landsat】→【Fast】,选择文件“LandsatTM_JasperRidge_hrf.fst”,图像的真彩色组合将自动显示在视窗中;

2)在工具栏中【Stretch Type】设置为【Gaussian】。

图1 高斯拉伸后的影像

视窗中可以识别场景中的若干特征,包括图像中间的西北-东南方向的长湖面,左侧的各类植被和在右侧的城市地区。

2.典型地物光谱分析

1)点击工具栏图标,出现【Spectral Profile】显示光谱图;

图2 图像光谱图

2)【Options】→【New window with plots】,在影像中找到相应的植被、水体、土壤位置,分别查看光谱曲线,将相应的.fst文件拖入新窗口中,得到植被、水体、土壤采样点在新建的窗口中同时绘制的光谱曲线;

图3 将相应文件拖入新窗口

3)将上一步骤绘制的光谱曲线与标准光谱曲线进行对比分析;

图4 未校正的植被光谱曲线

对比发现,未校正的图像中植被光谱曲线最突出的大气特征是蓝色和绿色波段一致的上升趋势,这可能是由大气气溶胶散射引起的,或者通常被称为“天空光”,准确的大气校正应该补偿天空光以产生更真实地描绘表面反射率的光谱。

图5 典型地物采样点光谱曲线图

典型地物采样点光谱曲线图中,绿色为植被(对应图中像元位置为82,150),蓝色为水体(对应图中像元位置为243,284),棕色为土壤(对应图中位置为119,225)。

3.辐射定标

3.1采用Apply Gain and Offset工具进行辐射定标

1)【Radiometric Correction】→【Apply Gain and Offset】,选择LandsatTM_JasperRidge_hrf.fst文件,可以看到每个波段的增益值默认为1,偏置值为0;

图6 Gain and Offset Values对话框

2)用记事本打开LandsatTM_JasperRidge_hrf.fst文件,读取每一个波段的Gains和Biases数值,在Gain Values或Offset Values列表框中选中每一个波段,点击【Edit Selected Item】,修改增益和偏置值并点击回车键确认修改;

图7 数据头文件内容

3)选择输出路径,输入输出文件名“JasperRidgeTM_radiance_BSQ”,【Output Data Type】设置为Floating Point,点击OK并输出定标结果。

3.2采用Band Math工具进行辐射定标

1)加载原始影像数据“LandsatTM_JasperRidge_hrf.fst”;

2)在【Band Math】工具中选择输入对应波段的增益和偏移量,依次输入各波段辐射定标计算公式:

 Band1:0.786274521023619 *b1-6.199999809265137                                          

 Band2:0.817254878025429 *b2 -6                                       

 Band3:0.639607867072610 *b3 -4.5                                    

 Band4:0.635294117647059 *b4 -4.5                                        

 Band5:0.128470589132870 *b5 -1                                        

 Band6:0.044243137859831 *b6 -0.349999994039536    

图8 输入辐射定标公式

3.3采用Radiometric Calibration工具进行辐射定标

  1. 加载原始影像数据“LandsatTM_JasperRidge_hrf.fst”;
  2. 头文件中没有各波段的gain和offset值,需编辑头文件添加这两个参数。为避免出现图像不显示的情况,编辑头文件前需要将数据重新保存成ENVI格式;

3)在输出的ENVI格式数据基础上,【View Metadata】→【Edit Metadata】→【Add Metadata Items】→【Data Gain Values】/【Data Offset Values】,分别输入各波段的增益和偏移量;

图9 分别输入各波段的增益和偏移量

编辑完检查头文件。可以看到,头文件已经包含了各波段的gain和offset值;

图10 编辑头文件后头文件包含gain和offset值

4)【Radiometric Correction】→【Radiometric Calibration】,选择多光谱数据,输出存储方式选BIL或者BIP,点击Apply FLAASH Settings,Scale Factor会变成0.1;

图11 辐射定标参数设置

  1. 输出保存辐射定标结果。

4.大气校正

4.1准备用于输入Flaash的图像

采用FLAASH校正影像前,图像必须定标为辐射亮度并转换成BIP或BIL格式。FLAASH要求将输入图像校准为以[μW/(cm2 * sr * nm)]为单位的辐射率,原始影像是亮度值,因此需要对影像先进行辐射定标。此外,Landsat校准实用程序以[W /(m2 * sr *μm)]的辐亮度单位输出数据,这是10个单位差异的因子,因此还需要注意在辐射定标或者FLAASH参数对话框中设置比例因子。

1)加载影像数据;

图12 威海幅数据展示

2)【Radiometric Correction】→【Radiometric Calibration】,选择多光谱数据,输出存储方式选BIL或者BIP,为了转换10个单位因子,点击Apply FLAASH Settings,Scale Factor会变成0.1; 

  

图13 辐射定标设置参数

4.2使用FLAASH进行大气校正

1)加载上一步辐射定标后的数据,在工具栏中点击图标,显示光谱图;

2)单击并拖动图像中的植被区域,注意辐射曲线的形状;

图14 植被像元的光谱剖线图

这些光谱中最突出的大气特征是蓝色和绿色波段一致的上升趋势,这可能是由大气气溶胶散射引起的,或者通常被称为“天空光”。

3)【Radiometric Correction】→【Atmospheric Correction Module】→【FLAASH Atmospheric Correction】,出现FLAASH大气校正模型输入参数对话框。单击【Input Radiance Image】,选择辐射定标后的文件,并点击OK;

4)选择【Use single scale factor for all bands】,输入比例因子10,点击OK。由于在辐射定标参数设置中点击了Apply FLAASH Settings,此处比例因子不做修改,故输入1;

图15 辐射比例因子对话框

5)【Output Reflectance File】字段中,键入要写入的FLAASH反射输出文件目录的完整路径并定义输出文件名;

6)在 【Output Directory for FLAASH File】字段中,键入FLAASH输出文件的路径;

7)在【Rootname for FLAASH Files】字段中,键入FLAASH输出文件的路径,ENVI将自动为输入的根名称添加下划线字符;

8)设置其他必要参数;

【Flight Data】设置为2002年6月11 ;【Ground Elevation】设置为0.1;【Lat】设置为37 28 2.97;【Lon】设置为121 58 59.00;【Sense Type】设置为Landsat TM7;【Atmosphere Model】设置为Mid-Latitude Summer;【Aerosol Model】设置为Urban;

图16 大气校正参数值设置

需要注意的是,如果选择Water Retrieval,FLAASH输出文件将包括水蒸气图像、云分类图、日志文件和模板文件,所有这些文件将被写入到FLAASH输出目录并将使用根名称作为各自的标准文件名的前缀。由于本实验TM影像传感器在水吸收区没有用于计算大气中的水蒸气的波段,因此Water Retrieval默认为NO;

9)【Multispectral Settings】→【KT Upper Channel】设置为Band7;点击【Advanced Settings】,浏览可用的高级设置选项,保留【Automatically Save Template File】默认设置Yes以及【Output Diagnostic Files】默认设置No;

图17复杂设置窗口

10)返回FLAASH大气模型输入参数对话框,点击【Apply】,开始FLAASH处理。

4.3查看校正的图像

1)关闭【FLAASH Atmospheric Correction Results】对话框,加载大气校正后的文件。在工具栏中点击图标,选择【Spectral Profile】显示光谱图。点击和拖动图像中植被的地方并注意光谱曲线的形状;

图18 植被像素点光谱曲线

植被反射率曲线现在显示出具有特色的形状,其中在绿色中具有反射峰值,在红色中具有叶绿素吸收,并且红色边缘具有较高的近红外反射率。注意:由FLAASH校正后得到的反射率数据类型是扩大了10000倍的整数,需要除以10000才能得到真正的反射率数据。

2)查看大气校正前后的图像及植被光谱曲线。

①左图为大气校正后的图像,右图为大气校正前的图像;

图19 大气校正前后影像对比图

②左图为大气校正后的图像植被光谱曲线,右图为大气校正前的图像植被光谱曲线。

图20 大气校正前后影像植被光谱曲线对比图 

五、实验数据处理或分析结果

(1)将原始图像和辐射定标图像分别置于不同的视窗内,比较图像的空间分布差异;

①直观比较:

放大图像,仔细观察发现,原始影像中植被区域的空间分布不够明显,因为亮度和对比度较低,辐射定标后的影像中植被区域的空间分布更加明显,植被区域的边界和内部结构更加清晰。点击【Course Value】,查看图像中特定像素点的DN值,发现原始影像植被区域的亮度值主要集中在较低的DN值范围内,植被区域在影像中相对较暗。辐射定标后的直方图显示植被区域的DN值范围有所提高,这表明植被区域在辐射定标后的影像中亮度有所增加;

图21 放大图像进行对比

②查看数值统计特征:

原始影像的的对比度较低,直方图显示植被区域的DN值分布较为集中。辐射定标后的直方图显示植被区域的DN值分布更加分散,这表明辐射定标后的影像对比度有所提高。点击【Quick Stats】,查看所有波段的直方图,并打开图例,以比较两个图像的数值统计特征。左图为原始影像的直方图,右图为辐射定标后的直方图。可以发现,原始影像的统计参数(如均值、标准差)较低,这与较低的亮度和对比度相对应;辐射定标后的影像的统计参数(如均值、标准差)有所提高,这与亮度和对比度的提高相对应。

图22 辐射定标前后的影像数值统计特征

综上所述,辐射定标对图像空间分布的影响主要表现在提高了植被区域的亮度和对比度,使得植被区域的空间分布更加明显。

(2)将辐射定标前后的典型地物光谱曲线与进行对;

  

图23 辐射定标前植被光谱曲线                                 图24辐射定标后植被光谱曲线

①比较光谱曲线的形状:

辐射定标后的光谱曲线更准确地表示了地物的辐射特性。由于辐射定标去除了一些干扰因素,使得植被光谱曲线在各个波段之间的过渡更加自然,更符合植被光谱特性的理论模型。比如在红外波段(1100 - 2500nm),定标后的曲线能够更清晰地显示出植被在不同子波段(如短波红外、中波红外等)的反射率变化趋势。

②查看整体反射率:

原始图像未经过辐射定标,其数值可能受到传感器自身特性、大气干扰等多种因素的影响,导致反射率数值存在偏差,可能在某些波段出现过高或过低的情况。辐射定标过程对传感器获取的原始数据进行了校正,使其能够更真实地反映植被在各个波段的反射特性。例如,在可见光波段(400 - 700nm),植被定标后的反射率数值会更接近真实的植被反射率,能够更好地体现植被的绿度特征。

(3)将大气校正前后的典型地物光谱曲线与进行对比;

  

图25 辐射定标前植被光谱曲线                                图26 大气校正后植被光谱曲线

①比较光谱曲线的数值范围:

辐射定标前的光谱曲线数值范围可能较小,通常在0-255的DN值范围内。大气校正后的光谱曲线数值范围扩大,像元值扩大10000倍后,值在几百到几千不等。如果要得到0-1范围内的反射率数据,可以使用【Band Math】工具除以10000.0;

②分析光谱特征的准确性:

辐射定标前的光谱曲线受大气干扰,反射率较低,特征不明显,无法准确反映地物的真实辐射特性;大气校正后的光谱曲线更加精细,反映了地物的真实光谱特性,反射率较高,特征更加明显,特别是绿峰和红谷的特征更加突出,近红外波段反射更加平坦,能够更准确地表示植被等地物的光谱特征。

六、思考与总结

(1)思考

①典型地物光谱分析的重要性

典型地物光谱分析是理解不同地物如何响应不同波长的光的基础。这一分析有助于我们识别和区分不同类型的地物,建立更准确的辐射校正模型;

②辐射定标的挑战与方法

辐射定标需要考虑传感器的响应特性,包括其增益和偏置。面临的挑战包括传感器的非线性响应、温度变化对传感器性能的影响,以及不同传感器之间的校准差异。在进行实验时,需思考如何提高辐射定标的准确性,以及如何选择合适的定标方法(如绝对定标、相对定标);

③辐射校正后的数据分析

辐射校正后的图像数据可以直接用于地物分类、植被指数计算等应用。要提高这些应用的准确性和效率,可以考虑将辐射校正后的数据与其他地理空间数据(如高程数据、土地利用数据等)结合,以进行更复杂的空间分析;

④大气校正的模型选择

大气校正这一步骤对于获取地表真实反射率至关重要,在选择合适的大气模型(如6S、MODTRAN等)和参数、以及利用地面测量数据或卫星数据来校准模型时,需要准确模拟大气条件,包括气溶胶、水汽、臭氧等的影响。

(2)总结

典型地物光谱分析涉及识别和理解不同地物在遥感图像中的光谱响应。这一过程对于建立准确的辐射校正模型至关重要,因为它提供了地物光谱特性的基准数据。

辐射定标是将遥感图像的数字数值(DN值)转换为辐射亮度值的过程。这一步骤校正了传感器的响应差异,包括传感器的增益和偏置,确保了图像数据的辐射量度是准确和可比较的。

大气校正是消除大气对遥感图像光谱影响的过程,通过模拟大气对辐射的散射和吸收作用,将辐射亮度值转换为地表反射率。这一步骤对于获取地表真实反射特性至关重要,尤其是在进行植被指数计算和地物分类时。

通过以上几个步骤,辐射校正为遥感图像的后续分析提供了准确的光谱信息。这不仅提高了图像的光谱精度,还为后续的定量分析、变化检测和地物分类提供了可靠的数据支持。准确的辐射校正能够有效地消除传感器和大气引起的误差,使得遥感数据在实际应用中更加有效和可靠。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值