背包DP--分组背包

分组背包

【题目】

n n n组物品和一个容量是 V V V的背包。每组物品有若干个,同一组内的物品最多只能选一个。每件物品的体积是 v i v_i vi,价值是 w i j w_{ij} wij,其中 i i i是组号, j j j是组内编号。
求解将哪些物品放入背包,可使物品总体积不超过背包容量,且总价值最大。输出最大价值。

【输入】

第一行有两个整数 n n n V V V,分别表示物品组数和背包容量。
接下来有 n n n组数据:
每组数据第一行有一个整数 s i s_i si,表示第 i i i个物品组的物品数量;
每组数据接下来有 s i s_i si行,每行有两个整数 v i j v_{ij} vij w i j w_{ij} wij,分别表示第 i i i个物品组的第 j j j个物品的体积和价值;
【输出】
输出一个整数,表示最大价值。

输入样例

2 6
2
1 2
2 3
3
1 1
3 5
2 4

输出样例

8

我们使用以下五步来分析这个背包dp问题
1️⃣确定dp数组(dp table)以及下标的含义
2️⃣确定递推公式
3️⃣dp数组如何初始化
4️⃣确定遍历顺序
5️⃣举例推导dp数组

方法一:朴素算法

第一步:确定dp数组(dp table)以及下标的含义
最大价值应该是物品组 i i i和背包容量 j j j的函数,用 f [ i ] [ j ] f[i][j] f[i][j]表示 i i i组物品,能放入容量为 j j j的背包的最大价值。

第二步:确定递推公式
此时我们来思考一下状态转移的过程以便我们来理解递推公式
在前面明确了 d p dp dp数组的含义 i i i组物品,能放入容量为 j j j的背包的最大价值。
那么我当前的 f [ i ] [ j ] f[i][j] f[i][j]只由 f [ i − 1 ] [ ? ] f[i-1][?] f[i1][?](这里指的是第 i i i行的数据来源于第 i − 1 i-1 i1行)决定
所以对于第 i i i组物品,容量为 j j j的背包,有 s + 1 s+1 s+1种选法(有不选的情况,直接取 f [ i − 1 ] [ j ] f[i-1][j] f[i1][j]的值即可)
所以在这其中取最大值即可

m a x ( f [ i − 1 ] [ j ] , f [ i − 1 ] [ j − v 1 ] + w 1 , f [ i − 1 ] [ j − v 2 ] + w 2 , . . . . . , f [ i − 1 ] [ j − v s ] + w s ) max(f[i-1][j],f[i-1][j-v_1]+w_1,f[i-1][j-v_2]+w_2,.....,f[i-1][j-v_s]+w_s) max(f[i1][j],f[i1][jv1]+w1,f[i1][jv2]+w2,.....,f[i1][jvs]+ws)

 // 选入第i组第k个物品,能获取的价值
f[i][j] = max(f[i][j],f[i-1][j-v[i][k]]+w[i][k]) 

第三步:dp数组如何初始化

第四步:确定遍历顺序

由第二步可知我的遍历顺序为先遍历物品,再遍历体积,最后遍历第i组的每一个物品,从中选择当前状态下价值最大的一个。

第五步:举例推导dp数组

打印dp数组,检查思路是否正确,检查每一个状态的值是否合理

代码:

for(int i=1;i<=n;i++){// 第i组物品
		for(int j=1;j<=V;j++){// 体积
			for(int k=0;k<=s[i];k++){// 第i组的k个可选物品
				// j为当前背包容量,v[i][k]为第i组第k件物品的体积
				// 第i组第k件物品的体积大于当前背包容量不选
				if(j>=v[i][k]){
					// f[i][j]为不选第i组第k个物品,已获取的价值
					/** f[i-1][j-v[i][k]]+w[i][k],
					为选入第i组第k个物品,能获取的价值 **/
					f[i][j] = max(f[i][j],f[i-1][j-v[i][k]]+w[i][k]);
				}
			}
		}
	}
	cout<<f[n][V];

对比多重背包的朴素算法

for(int i=1;i<=n;i++){// 物品 
		for(int j=1;j<=V;j++){// 体积 
			for(int k=0;k<=s[i];k++){// 决策 (选那些)
				if(j>=k*v[i]){
					f[i][j] = max(f[i][j],f[i-1][j-k*v[i]]+k*w[i]);
				}
			}
		}
	}
cout<<f[n][V];

多重背包:
时间复杂度可以优化(二进制优化,单调队列优化),
空间复杂度可以优化(二维数组–》一维数组)。

分组背包:
时间复杂度难以优化(分组背包第i组物品的体积和价值各不相同,难以组合或分类),
空间复杂度可以优化(只使用了上一行的数组,这样就可以优化为滚动数组(一维数组))。

for(int i=1;i<=n;i++){// 物品 
		cin>>s;
		for(int j=1;j<=s;j++) cin>>v[j]>>w[j];
		// 分组背包 朴素算法 一维 
		for(int j=V;j>=1;j--){// 体积 
			for(int k=0;k<=s;k++){// 决策 
				if(j>=v[k]){
					f[j] = max(f[j],f[j-v[k]]+w[k]);
				}
			}
		}
	} 
cout<<f[V];

逆序的原因:
因为 f [ j ] f[j] f[j]先于 f [ j − v k ] f[j-v_k] f[jvk]更新,所以 f [ j − v k ] f[j-v_k] f[jvk]的值等价于 f [ i − 1 ] [ j − v k ] f[i-1][j-v_k] f[i1][jvk]的值。

  • 25
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值